Volltext-Downloads (blau) und Frontdoor-Views (grau)

Implementierung einer Machine Learning-Kollektion als Open Educational Resources

  • Die Entwicklungen im Bereich der Informations- und Kommunikationstechnologie haben völlig neue Möglichkeiten des Datenaustausches und der Zusammenarbeit geschaffen. Das zeigt sich auch in der Lehre. Hier hat sich der Begriff der Open Educational Resources (OER) entwickelt, womit frei zugängliche Bildungsmaterialien bezeichnet werden. Um dieses Potential ausschöpfen zu können, braucht es innovative Herangehensweisen. In dieser Arbeit wird ein neuer Ansatz vorgestellt. Anstatt Lehrmaterialien als Teil eines didaktischen Konzeptes zu betrachten, werden sie als Objekte einer digitalen Sammlung verstanden. Das erleichtert die Adaptierung der Materialien an die spezifischen Anforderungen von Lehrveranstaltungen. Konkret wird der Ansatz auf den Aufbau einer OER-Kollektion für Machine Learning angewendet. Denn gerade in diesem Bereich zeichnet sich ein hoher Bedarf an Kompetenzvermittlung ab, um Forschende auf die Anforderungen einer immer datenintensiveren Wissenschaft vorzubereiten. Die gewonnenen Erfahrungen werden im Fazit als Lessons learned zusammengefasst, um damit andere bei der Umsetzung ähnlicher Vorhaben zu unterstützen. Die OER-Kollektion ist zugänglich über die Online-Plattform GitHub unter dem Link: https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Ines Schmahl
Document Type:Master's Thesis
Year of first Publication:2022
Date of final exam:2022/05/02
First Referee:Konrad FörstnerGND
Advisor:Philipp Schaer
Degree Program:Master in Library and Information Science
Language:German
Page Number:36
Tag:Nachnutzbarkeit; Sammlung
Machine Learning; Open Educational Resources
URN:urn:nbn:de:hbz:79pbc-opus-19657
Licence (German):License LogoCreative Commons - Namensnennung-Weitergabe unter gleichen Bedingungen