
File Synchronization as a Way to Add Quality
Metadata to Research Data

Master Thesis - Master in Library and Information Science (MALIS)

Faculty of Information Science and Communication Studies -
Technische Hochschule Köln

Presented by: Ubbo Veentjer
on: September 27, 2016
to: Dr. Peter Kostädt (First Referee)
 Prof. Dr. Andreas Henrich (Second Referee)

License: Creative-Commons Attribution-ShareAlike (CC BY-SA)

Abstract

Research data which is put into long term storage needs to have quality metadata attached so it may

be found in the future. Metadata facilitates the reuse of data by third parties and makes it citable in

new research contexts and for new research questions. However, better tools are needed to help the

researchers add metadata and prepare their data for publication. These tools should integrate well

in the existing research workflow of the scientists, to allow metadata enrichment even while they are

creating, gathering or collecting the data. In this thesis an existing data publication tool from the project

DARIAH-DE was connected to a proven file synchronization software to allow the researchers prepare

the data from their personal computers and mobile devices and make it ready for publication. The goal

of this thesis was to find out whether the use of file synchronization software eases the data publication

process for the researchers.

Forschungsadaten, die langfristig gespeichert werden sollen, benötigen qualitativ hochwertige Meta-

daten um wiederauffindbar zu sein. Metadaten ermöglichen sowohl die Nachnutzung der Daten

durch Dritte als auch die Zitation in neuen Forschungskontexten und unter neuen Forschungsfragen.

Daher werden bessere Werkzeuge benötigt um den Forschenden bei der Metadatenvergabe und der

Vorbereitung der Publikation zu unterstützen. Diese Werkzeuge sollten sich gut in den bestehenden

Forschungsprozess der WissenschaftlerInnen integrieren, um die Metadatenvergabe schon während der

Erstellung, Erhebung und Sammlung der Daten zu ermöglichen. In der vorliegenden Arbeit wurde ein

existierendes Datenpublikationstool aus dem Projekt DARIAH-DE mit einer bewährten Dateisynchroni-

sationssoftware verknüpft, um Daten von den Arbeitsplatzrechnern und Mobilgeräten der Forschenden

früher auf eine Publikation vorbereiten zu können. Das Ziel der vorliegenden Arbeit ist es herauszufinden,

ob der Einsatz von Dateisynchronisationssoftware die Datenpublikation der Forschenden vereinfachen

kann.

Keywords

Research Data, Research Data Lifecycle, Metadata, File Synchronization, Data Publication

Schlagwörter

Forschungsdaten, Forschungsdatenkreislauf, Metadaten, Dateisynchronisation, Datenpublikation

2

Contents

1 Introduction 5

1.1 Use Cases . 6

1.2 Thesis Organization . 7

2 Background Information 7

2.1 DARIAH-DE . 7

2.2 Target Group . 8

2.3 DARIAH AAI . 9

2.4 DARIAH-DE Repository and the Publikator . 9

2.4.1 Data Model . 12

2.5 File Synchronization . 13

2.5.1 Technical Background . 14

2.6 Research Data Lifecycle . 15

2.7 Legal Aspects of Cloud Storage Solutions in Research Projects 18

3 Evaluation of Software Solutions for File Synchronization Services 18

3.1 Requirements . 18

3.2 Tools in the Evaluation . 19

3.2.1 Dropbox . 20

3.2.2 ownCloud . 21

3.2.3 Seafile . 22

3.3 Feature Comparison . 24

3.4 Performance Comparison . 24

3.5 Conclusion . 25

4 Application Design 25

4.1 Extending the Data Model of the Publikator for Seafile Integration 26

4.1.1 Creating Unique Identifiers for Data Objects in Seafile 27

4.1.2 Additions to the Data Model to Manage a Seafile Collection with the Publikator 28

4.2 Architecture of Seafile and Seahub . 29

5 Implementation 29

5.1 Authorization Flow . 29

5.2 Seafile API Connection . 31

5.3 Views and Components Needed in Publikator Portlet 33

5.4 Subcollections . 35

5.4.1 Seafile Specific Additions for Subcollection Handling 37

5.5 Automated Metadata Extraction . 37

5.6 Publish to the DARIAH-DE Repository . 38

6 Validation of the Implementation 39

6.1 Use Case 1 - Data Publication of Existing Research Data 39

6.2 Use Case 2 - Backup, Metadata for Research Data and Metadata Extraction 40

3

6.3 Use Case 3 - Collaboration . 40

6.4 Possible Future Work . 41

6.4.1 Tracking Renaming and Removal of Files and Subfolders 41

6.4.2 Seafile Drive Client . 42

6.4.3 Client Side Encryption . 42

7 Conclusion 43

Abbreviations 44

List of Figures 46

Bibliography 47

4

1 Introduction

The project DARIAH-DE is the German part of the European DARIAH network.1 DARIAH, the “Digital

Research Infrastructure for the Arts and Humanities”, focuses on building and connecting digital research

data, tools and methodologies for the Arts and Humanities, with its roots in the Digital Humanities.2

One main area of interest for DARIAH-DE is research data management.3 Research data management

needs quality metadata4 for the research data, to preserve the context of the data far beyond a research

project life cycle. DARIAH-DE offers the DARIAH-DE repository to store research data together with its

metadata, adding persistent identifiers to every data object.5

For publishing research data to the DARIAH-DE repository, a new tool, the DARIAH-DE Publikator,

is developed by the DARIAH-DE project. This is a web based user interface, which allows uploading

data and describing it with metadata utilizing standard metadata vocabularies like Dublin Core (DC)

metadata terms6. The data objects (files with metadata) are organized in collections. The Publikator is a

workspace, where the progressing work on the collection is saved, before the researcher publishes it to

the DARIAH-DE repository.

The browser-based approach for uploading data still has its drawbacks. Using the browser for file

upload does not adopt well for data which is still changing, as the user needs to manually update

changed files in the Publikator. So this does not work well for a scenario where the researcher would

like to use the Publikator early in the research project for data management. The value of the Publikator

would be greater if it could accompany the researcher from the beginning of the research process, as

the management of metadata and the organization of data would become a continuous process, in

contrary to a final step before the research project finalizes. Additionally, it may be frustrating if larger

files or folders are not fully uploaded to the storage because of network instability or other reasons, so

the web upload may need to be repeated manually more than once. Especially in situations where no

internet connection is available, like during a visit in an archive or while traveling, the browser based

approach may interfere with the researcher’s work.

On the other hand there are already existing practically approved tools to manage data sharing with

web locations, so-called file synchronization services.

File synchronization services like Dropbox7 have started to play an important role in the data manage-

ment of private persons, but also for researchers, as they offer a convenient way to work with data

on different devices and with groups of people. Working on files stored on the own hard disk and

synchronized to cloud systems in the background offer the flexibility of not caring about off- or on-line

status. Also it offers the comfort to just not think about the details, the files will just be synchronized

without further user interaction.

1DARIAH-DE (2016a)
2DARIAH-EU (2016)
3DARIAH-DE (2016g)
4The quality of metadata is hard to measure, but there is an agreement that in this context “quality is about fitness for

purpose” (Guy, Powell, & Day (2004))
5Funk & Schmunk (2015)
6DCMI Usage Board (2012)
7Dropbox Inc. (2016g)

5

While well done cloud services offer usability and comfort, data security and privacy aspects have to be

taken into account, especially for research projects. So it is important to have the data hosted in trusted

environments, like the own computing center or within a research infrastructure like DARIAH-DE8.

Another missing feature in existing file synchronization services useful for managing research data is a

possibility to attach standardized metadata to files. Normally there are only options to add comments

to files or folders.

The subject of this master thesis is to combine these two technologies, the DARIAH-DE Publikator for

the metadata management for the research data and a file synchronization service. This allows to have

data residing on the researchers devices and synchronized to a server known to the Publikator.

The software developed for this thesis is installed on an own server and is available for testing.9 User

documentation explaining how to use the software has also been written.10

1.1 Use Cases

The following three use cases shall illustrate the benefits of the software developed within this thesis.

Actors are Alice and Bob, two scholarly researchers in the humanities.

1. Bob has collected a large amount of material on his hard disk for his research project, which is

nicely organized in folders. Now in the preparation of the final publication of his work, he seeks

a way to also publish the research data he bases his publication upon. Using the DARIAH-DE

file synchronization service allows him to take the folder structure on his hard disk, view the

contained files in the DARIAH-DE Publikator and add some Dublin Core metadata to his data

objects describing the content and the context of these files. Finally he hits the publish button

to have his data together with the metadata published within the DARIAH-DE repository. The

folder structure on his hard disk is reflected as subcollections. Persistent identifiers (PIDs) are

attached to each collection, subcollection and file. So he is able to reference the data he based

his publication on in a stable manner from within his paper.

2. Alice starts a research project, for which she needs to travel to Vietnam to collect material from

archives and to take photos or videos from interviews with contemporary witnesses. Using the

DARIAH-DE file synchronization service allows her to synchronize her collected data automatically

every time she is able to connect to the Internet. She adds metadata to her files early in the

research process, during or shortly after the data is created, so building a solid foundation for a

later publication. The DARIAH-DE Publikator supports her by extracting embedded metadata, as

GPS coordinates and timestamps, from photos and videos. So even without deeper annotation

there is already some context added to the data.

After longer periods of being off-line she just connects her devices (a laptop, a tablet PC and a

mobile phone) to the sometimes unstable network connection. While she sleeps her devices

8DARIAH-DE (2016d)
9Veentjer (2016b). https://portal.sftest.de.dariah.eu/
10Veentjer (2016c). https://sftest.de.dariah.eu/docs/

6

https://portal.sftest.de.dariah.eu/
https://sftest.de.dariah.eu/docs/

synchronize the data with the synchronization server in the background. The local file synchro-

nization client knows how to continue uploading the data whenever network access is available.

So before Alice continues her travel the next day her data is safe on the server.

3. Alice and Bob work together on a paper, which incorporates some of the data Alice collects in

Vietnam. Being invited to Alice’s file synchronization group Bob is able to already work with the

data while Alice is still traveling. The DC-metadata annotations Alice leaves on the files help Bob

to put the data in the right context. He copies some of the data items in new subcollections

which they publish to the DARIAH-DE repository, to reference these items in their paper.

While use case 1. focuses on the publication and data publication at the end of the research process,

use case 2. shows the advantages of preparing the data early in the research process. It also shows how

data synchronization is used as a backup and collection management solution. Also it highlights the

benefit of embedded metadata extraction. Use case 3. deals with the benefits of collaborative work

with the help of data synchronization and the DARIAH-DE Publikator.

Note: Not the whole toolchain to fulfill all the requirements for the use cases is developed within this

thesis. So the connection of a file synchronization tool and the Publikator with the group management of

the DARIAH-AAI, which would be needed for use case three to work, is out of scope. But the foundation

to offer such services is laid within the development of this thesis.

1.2 Thesis Organization

After giving some background information about the context of the thesis, some file synchronization

services are evaluated for being used within this thesis. Afterwards the application design is discussed,

and later on some implementation details are highlighted. The thesis concludes with an evaluation of

the use cases and describes some possible future works.

Code blocks inlined with the text are accentuated like console.log('hello world');.

2 Background Information

2.1 DARIAH-DE

DARIAH-DE started in 2011 and is the german partner in the european DARIAH project network.11 Its

goal is to support “digitally enabled research and teaching in the arts and humanities”12. To reach this

goal, different services are developed or integrated in the DARIAH-DE infrastructure. Integration in this

11DARIAH-DE (2016a)
12DARIAH-DE (2016h), p. 2

7

case basically means to connect the services to the DARIAH AAI13. Integration could also mean to make

use of more DARIAH services, like the PID service14, the generic search15 or the collection registry16.

DARIAH-DE also offers the possibility to integrate own tools or services within the infra-

structure. Tools for integration have to meet three core criteria:17

1. The service or tool has to be relevant for research in the arts and humanities and

connected research disciplines.

2. The service or tool should already use resources from the DARIAH core infrastructure

(like collection- and schema registry, metadata standards, AAI, bit preservation, PID

service etc.), or the connection should be planned. There should be a sustainable

strategy for implementing data collections within the DARIAH-DE infrastructure.

3. All existing research data must be licensed as open access, the source code of

the tools and services must be under an open source license. This should allow

interoperability of research data and enable interdisciplinary reuse.

2.2 Target Group

“DARIAH-DE supports digitally-enabled research and teaching in the arts and humanities.”18

DARIAH-DE and TextGrid published a report which contains an analysis of the target group for these

Digital Humanities infrastructure projects.19 Also, DARIAH-DE published a report on the requirements

of the target group.20

“The users that DARIAH-DE targets are scholars from Arts and Humanities disciplines,

those working in research projects (including joint collaborative research projects) and/or

in research institutions.”21

A survey about the use of tools in the Digital Humanities was done for report 1.2.1. In chapter 5.3.13 it

summarizes the following requirements of the target group, what the tools should offer:22

• Integration: Programs should integrate in the workflow the researcher is used to.

• Transferability of Data: Data should not be bound to one system, but easily transferable into

other programs to continue work there.

13Authorization and Authentication Infrastructure - see chapter 2.3
14DARIAH-DE (2016o)
15DARIAH-DE (2016l)
16DARIAH-DE (2016b)
17translation of DARIAH-DE (2016n)
18DARIAH-DE (2016a)
19Göbel et al. (2015)
20Stiller et al. (2015)
21Romanello, Stiller, & Thoden (2015), p.8 citing Stiller et al. (2015)
22Stiller et al. (2015), p.37f.

8

• Availability: The data should be available for all participants of the project any time in any place.

• Platform Independence: Software not available on some operating systems could complicate

the workflow.

2.3 DARIAH AAI

The Authorization and Authentication Infrastructure (AAI) for DARIAH is responsible for authorizing users

to the service providers. It allows central user management, single sign-on and rights delegation.23

The DARIAH AAI is based on the SAML24 standard by OASIS.25 The SAML implementation in use is

Shibboleth26 to implement single sign on (SSO). Shibboleth allows a federation where users belonging

to participating institutions can get access to Shibboleth protected services, like most DARIAH-DE

services. Institutions participating in the Shibboleth Federation run an identity provider (IDP), a server

which is connected to the user management of the institution, and authenticates users as institution

members towards service providers. A service provider (SP) can get information about users from the

IDP in a secure way. The service provider is a Shibboleth secured service, like the DARIAH-DE storage.

DARIAH-DE is a member of the DFN-AAI27, so all members of participating institutions are able to

authenticate on DARIAH-DE services. DARIAH-DE also runs an own IDP, so DARIAH-DE services can be

accessed with an institutional login, or with a DARIAH-DE account.28

2.4 DARIAH-DE Repository and the Publikator

The DARIAH-DE Repository is a composition of different services, fig. 1 shows how these interact.

DARIAH-DE offers two facilities for research data storage, the “own storage” and the DARIAH-DE

repository29 (public storage). While both utilize a REST interface based on the DARIAH-DE storage

API30 the own storage is meant for temporary storage of files, while the repository is for long term

preservation of research data, adding PIDs and valuable metadata to stored items. To deposit data into

the DARIAH-DE repository there is the DARIAH-DE Publikator, which is available in the DARIAH-DE

portal31.

23DARIAH-DE (2016e)
24OASIS (2016). http://www.oasis-open.org/committees/security
25DARIAH-DE (2016f). https://de.dariah.eu/aai
26Shibboleth (2016). https://shibboleth.net/
27Deutsches Forschungsnetz (DFN) (2016). https://www.aai.dfn.de/
28all information from DARIAH-DE (2016f) and DARIAH-DE (2016e)
29Funk & Schmunk (2015)
30Funk et al. (2012)
31DARIAH-DE (2016c). https://de.dariah.eu/publish

9

http://www.oasis-open.org/committees/security
https://de.dariah.eu/aai
https://shibboleth.net/
https://www.aai.dfn.de/
https://de.dariah.eu/publish

Figure 1: DARIAH-DE Repository

10

The DARIAH-DE portal is running with Liferay32. “Liferay Portal” is a content management system (CMS)

implemented in Java. Own extensions to the CMS can be developed as portlets, whose structure is

defined in a Java specification33. The Publikator is implemented as a portlet, which is integrated in the

DARIAH-DE Liferay Portal.

The Publikator offers the possibility to add Dublin Core (DC) metadata terms34 to data files to be

deposited into the DARIAH-DE Repository.35 The metadata is attached to collections and single files,

which are uploaded with the web browser and stored in the DARIAH-DE own storage. A collection is a

RDF36 file in turtle37 format, which contains metadata for the collection itself, links from the collection to

each included file (its storage ID / storage location), and metadata for each of these files. The collection

itself is stored in the own storage, referenced by its DARIAH-DE storage ID. This storage ID is connected

to the Liferay user data, so an authenticated user can continue working on collections any time.

Figure 2: Screenshot of the DARIAH-DE Publikator in February 2016

32Liferay Inc. (2016). http://liferay.com
33JCP (2003). https://jcp.org/en/jsr/detail?id=168
34DCMI Usage Board (2012). http://dublincore.org/documents/2012/06/14/dcmi-terms/
35Funk & Schmunk (2015), p.12
36Schreiber & Raimond (2014)
37Becket, Berners-Lee, Prud’hommeaux, & Carothers (2014)

11

http://liferay.com
https://jcp.org/en/jsr/detail?id=168
http://dublincore.org/documents/2012/06/14/dcmi-terms/

Collections with their data and metadata can be published to the DARIAH-DE repository any time when

the researcher is ready. At publishing, a check for required metadata is done before finally depositing to

the repository. This is done by the DARIAH Publish Service (DH-publish). Persistent identifiers utilizing

the EPIC PID System38 are attached to the collection and each published item for stable citability of the

data.39

2.4.1 Data Model

The data model for the Publikator and the DARIAH-DE repository is written in RDF-Schema40. It defines

a dariah:DataObject, which is described by Dublin Core metadata terms41. A dariah:Collection is a

subclass of an dariah:DatabObject, thus sharing its properties. Furthermore a dariah:Collection is able

to aggregate dariah:DataObjects.42

dariah:Collection
contains

subclass of
dariah:DataObject

dc:title

dc:format

...

Figure 3: Data model of the Publikator

38DARIAH-DE (2016p)
39Funk & Schmunk (2015), p.8
40Brickley & Guha (2014)
41DCMI Usage Board (2012)
42DARIAH-DE (2016k). http://de.dariah.eu/rdf/dataobjects/terms/

12

http://de.dariah.eu/rdf/dataobjects/terms/

The following source listing shows how the RDF metadata (serialized in turtle) looks for the collection

from fig. 2:

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dariah: <http://de.dariah.eu/rdf/dataobjects/terms/> .
@prefix dariahstorage: <https://de.dariah.eu/storage/> .

dariahstorage:400751 a dariah:Collection;
dc:creator "Ubbo Veentjer";
dc:date "2016-02-19";
dc:format "Inkscape SVG";
dc:language "German";
dc:title "Poster DARIAH-DE Grand Tour 2016";
dcterms:hasPart dariahstorage:400752, dariahstorage:400753.

dariahstorage:400752
a dariah:DataObject;
dc:format "image/png";
dc:title "publishgui_sf_libs.png".

dariahstorage:400753
a dariah:DataObject;
dc:creator "Ubbo Veentjer";
dc:date "2016-02-05";
dc:description "First draft of the text for the poster";
dc:format "Markdown";
dc:language "German";
dc:title "text.md".

2.5 File Synchronization

The idea of synchronizing files on different computers is rather old, as the implementation of rsync

shows, which had its initial release in 1996.43 The problem was rethought, as mobile devices came

up, and end-users started to own more than one device.44 At least since the release of Dropbox in

200845 the idea of using the cloud for file storage and to synchronize with different devices and share

with different people became popular and reached a larger audience. The usability and simplicity of

43Tridgell (1996)
44Balasubramaniam & Pierce (1998), p. 1
45Wikipedia (2016b). https://en.wikipedia.org/wiki/Dropbox_%28service%29

13

https://en.wikipedia.org/wiki/Dropbox_%28service%29

Dropbox may have played an important role in its success.46 As of now there are many commercial and

non-commercial solutions and offerings for file synchronization available, often in combination with

cloud storage.47

2.5.1 Technical Background

File synchronization tools try to provide users with the same files on different devices, which is not only

simple replication. Files change on the different devices, and the real problem lies in conflicts, when files

change on two devices, and there is no true “latest revision”, therefore Balasubramaniam and Pierce

noted in 1998:

The overall goal of a file synchronizer is very easy to state: it must detect conflicting updates

and propagate non-conflicting updates.48

How a file synchronizer behaves on conflicts, and how it propagates non-solvable problems to the

user, is still a key distinction feature of existing implementations, and something which needs to be

investigated comparing different file synchronization products.

After this very basic (and most problematic) requirement, there are more distinction features, which can

offer better usability and performance of the implementation, like deduplication and delta synchroniza-

tion support.

Basic deduplication means that the software tries to check if a file is already existing on the server

before uploading it. This can be done with checksums utilizing hash function, so-called hash sums.

With a hash sum it is possible to create a unique fingerprint of a file based on its content. So if the hash

sum of a file on the client matches the hash sum of the file on a server, the file is not uploaded again.

This can feel like a very fast synchronization of big files, as for example an mp3 file or a whole movie

can be synchronized in seconds, if already existing on the server, e.g. from other users.

Deduplication can also happen on block level, which means that bigger files are split into so-called

blocks of a smaller size. These blocks also get a unique hash sum representing the content of the data.

This adds the possibility for delta synchronization. Delta synchronization tries to find only the changed

blocks of a file, and only synchronize changed blocks, which can lead to better performance and less

bandwidth usage.49

However, delta- or block level synchronization can only play a beneficial role in a limited bunch of use

cases. A use case where this technique can save bandwidth would be large media files like videos. But

these are normally compressed, and in the moment the data is compressed, not only some blocks but

the whole file changes on updates.50

46Dunn (2008)
47Wikipedia (2016a). https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
48Balasubramaniam & Pierce (1998), p.1
49see Heckel (2012), p.11ff
50see Syncplicity Blog (2009)

14

https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software

Also, deduplication has some drawbacks, Dropbox for example disabled it, as users found out how to

use Dropbox’s deduplication feature for file sharing. Basically they exchanged hash sums for e.g. movies,

and tricked the Dropbox client into believing that a file with a specific hash has been added to the users

account, so the file of a movie appeared in the user’s Dropbox account.51

For the use cases of this thesis the disadvantages of deduplication can be ignored, as the chance of

possible illegal use or data theft with the help of deduplication are ignorable in a controlled environment

like DARIAH-DE. How beneficial delta synchronization will be depends on the data stored by the target

group.

To sum it up, there is no real need for the synchronization tool to be used within this thesis to provide

delta synchronization and block level deduplication, as the performance benefits should be ignorable.

However, it could be beneficial to know which tools allow using these techniques for future research

projects. There could be use cases in the digital humanities where working with large files is part of a

project. TEI files as an example could become large, if they are deeply annotated. Also, some RDF data

files are very space demanding, as e.g. the GND data dump of the DNB has an uncompressed size of

about 21GB.52. If a project deals with editing this kind of files, either with a tool or with a XML editor, and

it is known that with every saving only a smart portion of the large file changes, the synchronization

speed difference between a synchronization tool with delta deduplication and one without may be in

the magnitude of hours vs. seconds, also depending on the speed of the internet connection.

2.6 Research Data Lifecycle

There are numerous definitions of “research data” and the “research data lifecycle” available. As this

thesis is developed in the context of the DARIAH-DE project, a closer look at the ground work done in

this project will be taken. The DARIAH-DE working paper 11 - “Diskussion und Definition eines Research

Data LifeCycle für die digitalen Geisteswissenschaften”53 discusses the definition of a research data

lifecycle for the digital enhanced Arts and Humanities, where in this case the digitally working research

disciplines in the Humanities, not only the so called “Digital Humanities” are targeted. In this working

paper some definitions are proposed, which are adopted for this thesis. Some definitions which are

important for this thesis will be summarized and translated in this chapter.

First the term “data” will be examined. A single digital object or a collection of many of them could

be understood as data. Puhl et al. (2015) reference the definition of Funk (2010), who differentiates

between physical, logical and conceptional objects. The physical object is the information in its “raw”

form, how it is written to its storage medium. Depending on the type of the medium this could be

magnetically (hard disk, floppy disk) or optically readable information (CD-ROM, DVD). The physical

object consists of this raw sequence of “0” and “1”, the bits which form the bitstream.54 The logical

object is the information which could be read from this bitstream, which is presented as a file by the

operating system. As a file has a file format, a program can be chosen which can present this file to the

51see Wikipedia (2016c)
52Deutsche Nationalbibliothek (DNB) (2016)
53Puhl et al. (2015)
54see Funk (2010), p. 140 f.

15

user, for example an image viewer for viewing an image file. The conceptual object describes the idea

of how the logical object was intended to be used on creation. This could for example include macros

in Excel sheets which offer functionality beyond the raw tabular data. For the conceptional object to be

preserved additional metadata has to be added to the logical object such as the software, its version

and the operating system used.55

The information to describe the conceptional object should be ingested into the repository, which are

the logical object and metadata to preserve its context. The file synchronization software will only work

with the logical object. The Publikator and the DH-publish service will deal with the steps necessary to

preserve the conceptional object, such as extracting technical metadata.56

To define the term “Research data” Puhl et al. (2015) state:

Unter digitalen geistes- und kulturwissenschaftlichen Forschungsdaten werden innerhalb

von DARIAH-DE all jene Quellen/Materialien und Ergebnisse verstanden, die im Kontext

einer geistes und kulturwissenschaftlichen Forschungsfrage gesammelt, erzeugt,

beschrieben und/oder ausgewertet werden und in digitaler Form zum Zwecke der

Archivierung, Zitierbarkeit und zur weiteren Verarbeitung aufbewahrt werden.57

This sentence can be translated to

In DARIAH-DE digital research data for the Arts and Humanities is understood as the

sources, materials and results that are based on a research question, which are collected,

generated, described and/or evaluated and stored in machine-readable form for analyzing,

archiving purposes, citability, and for further processing.

Within this thesis the term “research data” should reference the data collected in the research process.

For this data to be useful for further reuse, it needs to have metadata to be findable by other researchers

in a later state.

Chapter 4.1.3 of the working paper discusses the difference between data and metadata. It is stated

that

“Metadata is often called data about data or information about information.”58

There are formats where the data object can be described as metadata, as with TEI59, where the file

often contains the structural information (the metadata) about an original text.

Puhl et al. (2015) also mention the existence of descriptive metadata embedded in files like MPEG

or Open Office files. For this thesis the approach is taken to make use of embedded metadata to

automatically extract some metadata from the synchronized files for the Publikator. Nonetheless this

will only be an addition to the metadata which is managed by the Publikator. For this thesis metadata

55see Funk (2010), p. 142 ff.
56see DARIAH-DE (2016j). https://wiki.de.dariah.eu/display/publicde/Das+DARIAH-DE+Repositorium
57Puhl et al. (2015), p. 14
58NISO (2004)
59Text Encoding Initiative (TEI) (2016)

16

https://wiki.de.dariah.eu/display/publicde/Das+DARIAH-DE+Repositorium

should be understood as the data describing a digital object provided by the researcher, which is stored

separately from the object.

To put the term “research data lifecycle” into context the graph from the Data Documentation Alliance

is used here60 (fig. 4), as also the DARIAH-DE graph explaining the research data lifecycle is based on

this one.61

Data
Archiving

Study
Concept

Data
Collection

Data
Processing

Data
Distribution

Data
Discovery

Data
Analysis

Repurposing

Figure 4: DDI Research Data Lifecycle

As the Publikator is a tool which is used before data archiving, it is located on the arrow between

“Data Processing” and “Data Archiving”. If a file synchronization tool is integrated into this workflow,

it is located at the box “Data Collection”, which is earlier in the process. The connection of a file

synchronization service with the Publikator can be seen as a shortcut between “Data Collection” and

“Data Archiving” (see fig. 5). This reflects a requirement of the researchers, which would like to have

technical support to add metadata for publication to their research data already in the data collection

phase. The benefit of the connection of a file synchronization software to the Publikator is the ability to

cover a wider part of the research process.

Publikator Data
Archiving

FileSync

Study
Concept

Data
Collection

Data
Processing

Data
Distribution

Data
Discovery

Data
Analysis

Repurposing

Figure 5: Research Data Lifecycle with the Publikator and file synchronization (FileSync)

60DDI Structural Reform Group (2004), p.8
61DARIAH-DE (2016i). https://de.dariah.eu/research-data-lifecycle

17

https://de.dariah.eu/research-data-lifecycle

The tools developed within DARIAH-DE are covered by these theoretic ground works, such as done by

Puhl et al. (2015). As the software built within this thesis is integrating with these tools, it is important to

have a common understanding of these basics. In this thesis the terms data, metadata, research data

and research data lifecycle should be understood as defined here, if not stated otherwise.

2.7 Legal Aspects of Cloud Storage Solutions in Research Projects

Scholarly researchers like to use cloud based storage solutions for backup and synchronization of data

and also for collaboration in projects. While cloud based solutions offer comfort and flexibility, the

juridical requirements with regard to privacy protection and data safety have to be taken into account.

The officials responsible for data protection at the University of Wuppertal state for example that the

usage of external cloud storage solutions like Dropbox is prohibited if the data to be stored includes

private data about persons, job-related or confidential material.62

The DFG published a paper with recommendations on the usage of cloud services. This paper recom-

mends the usage of cloud services from institutions which are in the same judicial area as the data

owners and have no commercial interests, as the requirements for data security and privacy protection

are easier to fulfill this way.63 The paper concludes with a suggestion for project proposals, which

include cloud services, to first check if there are offerings from local partners like university computing

centers.64

DARIAH-DE offers storage solutions where the data is stored in national research computing centers

like the GWDG65.

3 Evaluation of Software Solutions for File Synchronization Services

This chapter deals with the evaluation and comparison of file synchronization tools. First the requirements

for this software are explained, afterwards the tools in this evaluation are introduced, before they are

compared. Finally, a synchronization tool is chosen to build the software developed within this thesis.

3.1 Requirements

One basic requirement for software within the DARIAH project is its availability as open source66. It

would be beneficial if the software brings the possibility to be easily integrated within the DARIAH AAI,

namely this would be Shibboleth67 and/or OAuth68 connectability.

62University of Wuppertal (2016)
63Deutsche Forschungsgemeinschaft (DFG) (2014), chapter 5
64Deutsche Forschungsgemeinschaft (DFG) (2014), chapter 7
65Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen (GWDG) (2016). https://www.gwdg.de/
66see chapter 2.1
67Shibboleth (2016). https://shibboleth.net/
68OAuth (2016b). https://oauth.net/

18

https://www.gwdg.de/
https://shibboleth.net/
https://oauth.net/

It has to be differentiated between client and server side software, as the server side software (the

service) is mainly offering the low level features. Some functions like versioning are often only available

in the web interface, so the usability of the user visible web interface has to be explored. The client side

software is the tool the user installs on the desktop system or mobile device. Ease of installation and

usability of features have to be evaluated.

From the use cases and the DARIAH context the requirement evolves that the client software should be

available for all major desktop operating systems (Windows, Mac OS, Linux), and also for the major

mobile platforms. According to Gartner the major mobile operating systems, as of the first quarter 2016,

are Android with 84.1% market share and iOS with 14.8% market share, all other mobile operations

being below 1%.69

Technically pleasing would be a file synchronization tool which supports delta synchronization and

deduplication, but this is a rather soft requirement. More important is the usability of the software, a

requirement which evolves from the target group. So the client side software should be easy to use and

understandable. A very important point is the handling of synchronization conflicts, especially how the

conflicts are communicated to the user. The user has to be informed of possible data loss and options

for resolving the conflict have to be presented.

Information security is another important point, it should be possible to encrypt the data transfer

between client and server. Features like client side encryption70 would be a nice add-on (and should

actually be possible with every synchronization software in our days), but is unfortunately interfering

with the way the data access from the Publikator has to be implemented within this thesis. This feature

would be of interest, if the user plans to also synchronize private data, which is not managed with the

Publikator. Possibly research could be done in a separate project if there are possibilities to implement

a metadata management solution in the Publikator for client side encrypted data.71

Also relevant is the overall performance of the tool, which includes the synchronization speed and the

CPU/memory demand of the software in idle state and while synchronizing.

Of interest for developing the integration with the DARIAH-DE Publikator is the API for accessing

information from the synchronization service, and how well the API is documented.

3.2 Tools in the Evaluation

Three tools were chosen for this evaluation. These are Dropbox, ownCloud and Seafile. Dropbox does

not meet the basic requirement of being open source, but joins the evaluation as an example of a

professional commercial offering. ownCloud and Seafile are taken into consideration because they

seem to be the most advanced open source solutions for file synchronization services.

69Gartner, Inc. (2016). http://www.gartner.com/newsroom/id/3323017
70Zafer (2015). http://www.infosectoday.com/Articles/Client-Side_Encryption.htm
71see chapter 6.4.3

19

http://www.gartner.com/newsroom/id/3323017
http://www.infosectoday.com/Articles/Client-Side_Encryption.htm

The evaluation was done in April 2016 with the following versions of the desktop clients:

• Dropbox: 3.16.1

• ownCloud: 2.1.1

• Seafile: 5.0.7

3.2.1 Dropbox

Figure 6: Dropbox desktop client - popup

dialog for tray icon

Dropbox72 is a commercial file synchronization cloud based service

operated by Dropbox Inc. It offers client software for all major desk-

top (Windows, Mac OS, Linux) and mobile (Android, iOS, Windows

Phone) operating systems. Dropbox started its services in 2007, and

got very good reviews at that time because of its good usability and

simpleness:73

[…] but unlike the others, it has almost no user interface.

All it has is a tray icon […]74

Dropbox quickly gained a large user base, counting around 500

million registered accounts in 201675.

3.2.1.1 Conflict Handling Synchronization conflicts in Dropbox

are handled by creating conflict files on the client. These conflict

files are also synchronized with the server, and visible on all other

connected clients76. Example:

test.txt
test (wintermutes conflicted copy 2016-04-02).txt

3.2.1.2 Privacy and Security Dropbox uses SSL encryption for transfering data from the client to the

server, and stores data in the Amazon cloud encrypted with AES77. The data is still visible for Dropbox

administrators, as Dropbox itself does not provide client side encryption, but Dropbox help states that

external tools may be used for client side encryption.78 Documents leaked by Edward Snowden indicate

that Dropbox was meant to be a future collaborator in the NSA PRISM program.79

72Dropbox Inc. (2016g). https://www.dropbox.com/
73Wikipedia (2016b). https://en.wikipedia.org/wiki/Dropbox_%28service%29#Reception
74Dunn (2008)
75Dropbox Inc. (2016b). https://blogs.dropbox.com/dropbox/2016/03/500-million/
76Dropbox Inc. (2016f). https://www.dropbox.com/help/36
77Dropbox Inc. (2016e). https://www.dropbox.com/help/27
78Dropbox Inc. (2016d). https://www.dropbox.com/help/28
79Greenwald & MacAskill (2013)

20

https://www.dropbox.com/
https://en.wikipedia.org/wiki/Dropbox_%28service%29#Reception
https://blogs.dropbox.com/dropbox/2016/03/500-million/
https://www.dropbox.com/help/36
https://www.dropbox.com/help/27
https://www.dropbox.com/help/28

3.2.1.3 Usability After installation Dropbox creates a folder ~/Dropbox which is synchronized with

the Dropbox server. Adding files to the synchronization is a simple operation on the file system, like

copying files into the Dropbox folder. Management of the files (like revision history) mainly happens in

the Dropbox web interface. Synchronization of folders outside the Dropbox folder is not possible, as a

workaround it is suggested to create symbolic links.80

3.2.1.4 API Documentation Dropbox offers a REST API and comprehensive documentation about

it.81

3.2.2 ownCloud

Figure 7: ownCloud desktop client -

popup dialog for tray icon

ownCloud82 is an open source solution for file synchronization and

cloud file storage. It offers some more features, like calendar and

contact synchronization and collaborative document edition.83 Na-

tive file synchronization clients exist for Windows, Linux, Mac OS

and also for Android, iOS and Windows Phone. The server side

software is written in PHP and installable on own servers. Available

are the open source edition and a paid enterprise edition, which

offers commercial support and some more advanced features.84

The ownCloud server already offers Shibboleth support.

On the 2nd of June 2016 the former ownCloud developer Frank Kar-

litschek announced the fork of ownCloud into a project named

Nextcloud85. This project is supported by a company named

Nextcloud GmbH86, which offers commercial support for Nextcloud.

Reasons for the fork are a more community friendly and open source

centric approach, where there is no dual licensing necessary for con-

tributors. There will be more features, which are now only available

in the paid enterprise version and not in the open source version. Karlitschek states that there still

will be enterprise features. As of writing, the Nextcloud fork does not differ much from ownCloud, so

the results of the evaluation should be comparable. If Nextcloud takes off it could be an interesting

alternative for ownCloud and Seafile.

80Dropbox Inc. (2016c). https://www.dropbox.com/help/12
81Dropbox Inc. (2016h). https://www.dropbox.com/developers-v1/core/docs
82ownCloud (2016d). https://owncloud.org/
83ownCloud (2016c). https://owncloud.org/features/
84ownCloud GmbH (2016). https://owncloud.com/features/
85Karlitschek (2016). http://karlitschek.de/2016/06/nextcloud/
86Nextcloud GmbH (2016). https://nextcloud.com/

21

https://www.dropbox.com/help/12
https://www.dropbox.com/developers-v1/core/docs
https://owncloud.org/
https://owncloud.org/features/
https://owncloud.com/features/
http://karlitschek.de/2016/06/nextcloud/
https://nextcloud.com/

3.2.2.1 Conflict Handling ownCloud creates conflict files, which are only stored on the client, from

which the later change is synced. Conflict files are not synchronized with the cloud. Example for a

conflict file:

testsync.txt
testsync_conflict-20160402-141843.txt

Figure 8: ownCloud desktop client - settings screen

3.2.2.2 Privacy and Security As the ownCloud

server software is freely available, it is up to the

user to decide which hosts to choose or to host

ownCloud by theirself. This means the data can be

stored by the trusted local computing center. own-

Cloud allows server side encryption, which means

that the administrator can allow encryption of the

user’s file on the server.87. Data transfer between

client and server can be secured with SSL with acti-

vating HTTPS on the web server, as communication

with the server is done via HTTP.

3.2.2.3 Usability ownCloud asks for a server ad-

dress to connect with after installation. Then it al-

lows to create or choose a folder to be synchronized,

with the folder ~/ownCloud being the default. It

is not easily possible to add arbitrary directories to

the synchronization. As with Dropbox, only folders

inside the ownCloud data folder are synchronized.

The usage of different ownCloud servers from the GUI is possible.

3.2.2.4 API Documentation The ownCloud REST APIs are based on the Open Collaboration Services

API specification (OCS).88. OCS describes API calls for web communities, allowing for finding users,

sharing data and collaboration.89

3.2.3 Seafile

The open source file synchronization server Seafile90 offers data synchronization features with native

clients for multiple platforms (Linux, Mac OS, Windows, Android, iOS). Available server side software

are the Seafile community edition, and a paid professional edition. The professional edition offers

87ownCloud (2016a) / Schießle (2015)
88ownCloud (2016b)
89Karlitschek (2013)
90Seafile (2016d). https://www.seafile.com/en/home/

22

https://www.seafile.com/en/home/

advanced features like high availability, an ElasticSearch backend and extended LDAP integration, while

the community edition is sufficient for smaller projects. Community edition and sources are available

from GitHub91.

3.2.3.1 Conflict Handling Seafile creates conflict files on the client. These also get transferred to the

server, and so they are visible to all participating parties/devices.92 Example for such a file:

test2.md
test2 (SFConflict ubbo@sftest.de.dariah.eu 2016-04-02-15-47-07).md

Figure 9: Seafile desktop client - user

interface with drop zone for

adding new libraries

3.2.3.2 Privacy and Security Other than ownCloud or Dropbox,

Seafile has a client side encryption feature integrated in the desktop

client, so the user can synchronize files not viewable by the server

administrator.93 This privacy feature is not yet supported by the

Android client, and may get insecure if the user views encrypted

libraries in the web browser, as in this case the password is stored

temporarily on the server.94 Not encrypted on server side is the

metadata for the files like filename and size, which may be seen

by the server administrator.95 Communication between server and

client can be secured utilizing SSL via HTTPS.

3.2.3.3 Usability Seafile is based on the concept of synchroniza-

tion libraries. A library is a sub folder from the ~/Seafile folder, but

may also be a folder from any other place in the file system. The

GUI client shows the status of these libraries. Other than Dropbox

and ownCloud, in Seafile it is easily possible to add arbitrary folders

to the synchronization anytime. It is just a matter of dropping a

folder from the file manager onto a drop area in the GUI to have a

new folder synchronized. While it is possible to connect to different

Seafile servers from the client, synchronization of the same folder

with different Seafile servers is not working.96

3.2.3.4 API Documentation Seafile provides full developers doc-

umentation of their RESTful API.97

91Seafile (2016c). https://github.com/haiwen/seafile
92more insight about Seafile’s conflict handling offers the document Seafile (2016i)
93Seafile (2016g). http://manual.seafile.com/security/security_features.html
94Seafile (2016g). http://manual.seafile.com/security/security_features.html
95see ef4 (2016) and Seafile (2016g)
96Seafile-Forum (2015)
97Seafile (2016e). https://manual.seafile.com/develop/web_api.html

23

https://github.com/haiwen/seafile
http://manual.seafile.com/security/security_features.html
http://manual.seafile.com/security/security_features.html
https://manual.seafile.com/develop/web_api.html

3.3 Feature Comparison

Product

OS WLM Mob ShS ShC OAuth DD DS VS SSL

Dropbox - X X - - X X X X X

Seafile X X X X X - X X X X

OwnCloud X X X X X X - - X X

• OS: OpenSource

• WLM: Clients for Windows, Linux and Mac Os

• Mob: Clients for Mobile Platforms (Android and iOS)

• ShS: Shibboleth Support (Server)

• ShC: Shibboleth Support (Client)

• OAuth: OAuth Support

• DS: Delta Synchronization

• DD: Deduplication

• VS: Versioning Support

• SSL: Secure communication

3.4 Performance Comparison

For this thesis, no own performance comparison of Seafile and ownCloud has been done. However,

there are blog posts describing performance comparisons of these tools. Christoph Dyllick-Brenzinger

of ionas.com tested how ownCloud 7.0.4 compares to Seafile 4.0.1 running as a Server on a raspberry pi.

In his test Seafile takes a clear lead in synchronization performance.98 This may also be caused by the

low CPU resources of the server, which would not be relevant for the use case of this thesis (server side

computing power should not be a limiting factor for a setup in the DARIAH-DE environment). Jürgen

Donauer from bitblokes.de did another test with Seafile 4.0 and ownCloud 7.0, finding that Seafile

performs a lot better with lots of small files, while both offer comparable performance with medium

and large sized files.99

98Dyllick-Brenzinger (2015)
99Donauer (2015)

24

3.5 Conclusion

As Dropbox is only evaluated for reference, the decision is whether to use ownCloud or Seafile for

integration with the DARIAH-DE Publikator. Both tools do their job very well and offer a comparable

feature set regarding to file synchronization.

The library concept of Seafile matches the libraries in the DARIAH-DE Publikator very well. It is beneficial

if the users can just pick any folder on their hard disk to make it a Publikator library. This provides a

better user experience, than having to copy folders into the ownCloud folder, or to create symbolic

links.

The REST API in Seafile is very well documented, so the benefit for this thesis is a faster development

process.

The possibility of easily available client side encryption did not play any role for the decision, as the

Publikator will not be able to deal with encrypted libraries. Of minor importance are the performance

tests or delta sync / block level deduplication, as the differences or benefits are negligible. The groupware

features beyond simple file synchronization ownCloud has to offer do not matter for the use cases of

this thesis.

Still the integration of Seafile in the Publikator will just be a proof of concept. The outcome should be

transferable to an integration of ownCloud, if necessary.

4 Application Design

After the background information is laid out, this chapter sums up the benefits of the implementation

and discusses the theoretical design of the application. Not all requirements from the use cases could

be met: on the one hand the DARIAH AAI, as of writing, does not yet provide group permissions for

the DARIAH-DE storage. On the other hand developing some features would exceed the time budget

for the implementations within this thesis. So the focus lies on implementing the connection of the

Publikator with Seafile, loosely connecting Seafile to the DARIAH AAI with a Shibboleth login, and

implementing subcollections and metadata extraction within the DARIAH-DE Publikator.

The source code of the Publikator is publicly available in a git repository.100 It is licensed under the

“Apache License Version 2.0”101 open source license. All the source code written within this thesis for the

Publikator portlet can also be found in this repository.

100DARIAH-DE (2016m). https://projects.gwdg.de/projects/publish-gui-portlet/repository
101Apache Software Foundation (2004). https://www.apache.org/licenses/LICENSE-2.0

25

https://projects.gwdg.de/projects/publish-gui-portlet/repository
https://www.apache.org/licenses/LICENSE-2.0

4.1 Extending the Data Model of the Publikator for Seafile Integration

One fundamental goal in the implementation of the Seafile connection with the Publikator was to be as

less invasive in the existing implementations as possible. As the connection between a dariah:Collection

and the contained data files is stated in the metadata of the collection (with the dcterms:hasPart relation),

the data model has to be extended in a first step. The final goal is to allow publishing a Seafile managed

collection with the DH-publish service.

To publish a collection with DH-publish, the storage ID of the collection metadata is handed over to

DH-publish. This could for example be the ID 1234, which is located at https://de.dariah.eu/storage/1234.

In this case the collection metadata DH-publish loads from this location would look like:

@prefix dariah: <http://de.dariah.eu/rdf/dataobjects/terms/> .
@prefix dariahstorage: <https://de.dariah.eu/storage/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dcterms: <http://purl.org/dc/terms/> .

dariahstorage:1234 a dariah:Collection ;
dc:title "Test1";
dcterms:hasPart dariahstorage:2345.

dariahstorage:2345 a dariah:DataObject ;
dc:title "image1.png".

If the abbreviated URI dariahstorage:1234 is expanded with the prefix definition in the header, this leads

to the long form https://de.dariah.eu/storage/1234 which in this case is a self reference, the metadata

attached here is describing this collection. Also it is said that a data file with name “image1.png” is

attached to this collection, and can be retrieved from https://de.dariah.eu/storage/2345. DH-publish

reads the metadata file including all the objects defined by the dcterms:hasPart relation and transfers

them to the repository.

As the storage location for an object is stored in its URI, we can add objects to be retrieved from Seafile

by DH-publish in the same way:

@prefix dariah: <http://de.dariah.eu/rdf/dataobjects/terms/> .
@prefix dariahstorage: <https://de.dariah.eu/storage/> .
@prefix seafile: <https://sftest.de.dariah.eu/files/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dcterms: <http://purl.org/dc/terms/> .

dariahstorage:1234 a dariah:Collection ;
dc:title "Test1";
dcterms:hasPart seafile:2345.

26

seafile:2345 a dariah:DataObject ;
dc:title "image1.png".

With a metadata file like this DH-publish would expect to retrieve the data file “image1.png” contained

in the collection from https://sftest.de.dariah.eu/files/2345. This leads to the next crucial point, how

to construct the URI to allow a service residing at https://sftest.de.dariah.eu/files/ handing out the

referenced file from Seafile.

4.1.1 Creating Unique Identifiers for Data Objects in Seafile

To read a file with the Seafile web API, the method download-file is used102. Its usage is:

GET https://[server-url]/api2/repos/[repo-id]/file/?p=[/path/to/file]

In consequence a service handing out a file from Seafile would need to have the Seafile library ID and

the complete path to the file inside this library. As the basic goal is to have a download location like

https://sftest.de.dariah.eu/files/ID, and a fixed prefix for the first part of this URI, all this information has

to go into the identifier part of the URI.

So the ID for a file with the path “/1.png” residing in a library with the ID “18c544c9-

b1ad-474a-a9db-a283f7c63d42” is constructed like this:

18c544c9-b1ad-474a-a9db-a283f7c63d42:/1.png

As the path may contain characters which are not allowed in URLs, this is encoded in Base64103:

MThjNTQ0YzktYjFhZC00NzRhLWE5ZGItYTI4M2Y3YzYzZDQyOi8xLnBuZw

This is a really long identifier already, and it may be much longer for files in deeper nested path structures,

hopefully compressing with deflate104 helps:

M7RINjUxSbbUTTJMTNE1MTdJ1E20TEnSTTSyME4zTzYzTjExstI31CvISwcA

102Seafile (2016e). http://manual.seafile.com/develop/web_api.html#download-file
103Josefsson (2006)
104Oracle (2016)

27

http://manual.seafile.com/develop/web_api.html#download-file

The deflate algorithm adds two characters in this case. But some quick tests have shown that using

deflate the ID gets shorter if the path is longer. If deflate really has an effect on this kind of identifiers is

another question, but not further researched within this thesis.

This identifier may not look nice because of its pure length, but it is a self contained unique reference

to a file within Seafile. So using this kind of ID allows the publication of files stored in Seafile with

DH-publish.

NOTE: The internal ID for a file in Seafile is a hash sum for the content of the file105 and so it changes

when the file changes. This means it is not usable as a unique reference to a file in the Publikator data

model.

4.1.2 Additions to the Data Model to Manage a Seafile Collection with the Publikator

To have the possibility to deal with a Seafile library inside the Publikator, some more information need

to be included in the RDF metadata files. The Publikator needs to know which Seafile library is tracked,

and also which path.

dariah:describesSeafileLibrary
seafile:a16ea413-e7ff-4337-92d7-ecee62a24dd7;

dariah:describesSeafileLibraryPath "/".

Here, the identifier (a16ea413-e7ff-4337-92d7-ecee62a24dd7) is a reference to the identifier of the

library in Seafile. The SeafileLibraryPath references the path in the folder structure, in this case the root,

which is required for handling subdirectories.106

The complete metadata for a Seafile managed library containing one file may look like this:

@prefix dariah: <http://de.dariah.eu/rdf/dataobjects/terms/> .
@prefix dariahstorage: <https://de.dariah.eu/storage/> .
@prefix seafile: <https://sftest.de.dariah.eu/files/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dcterms: <http://purl.org/dc/terms/> .

dariahstorage:1234 a dariah:Collection ;
dariah:describesSeafileLibrary

seafile:a16ea413-e7ff-4337-92d7-ecee62a24dd7;
dariah:describesSeafileLibraryPath "/".
dc:title "Test1";
dcterms:hasPart seafile:rEALLYlONGiD.

105to be more precise, it seems to be a SHA1 hash of the JSON object which is transferred to Seafile, see Seafile (2016h)
106see chapter 5.4.1

28

seafile:rEALLYlONGiD a dariah:DataObject ;
dc:title "image1.png";
dc:format "image/png".

4.2 Architecture of Seafile and Seahub

The server side software of Seafile is split into two components, Seafile and Seahub.107 Seafile is the

service daemon, which manages all services necessary for file synchronization, while Seahub is the web

interface, which also offers the web API for Seafile. Seafile is written in C, while Seahub is written in the

Python web framework Django108.

5 Implementation

This chapter describes the concrete work done on implementing the service.

5.1 Authorization Flow

The user login for the DARIAH-DE Publikator is done using Shibboleth, relying on the Liferay Shibboleth

integration. Seafile also offers a Shibboleth Login. It is possible to login with Shibboleth from the Seafile

desktop client, which allows any DARIAH-DE user to use the Seafile service from their desktop with their

DARIAH-DE login credentials.

To access the user’s libraries in Seafile from within the Publikator, the Publikator needs an authentication

token from Seafile. This requires a login delegation. The Publikator backend needs to retrieve a Seafile

authentication token with the Shibboleth login of the user, but the user’s login credentials are not known

to the Publikator. The login credentials should also not be made available to, or requested by, the

Publikator.

The approach taken in this thesis incorporates some of the ideas of OAuth2109, but is still rather basic.

As of the time of writing the thesis, there is only a beta version of an OAuth2 provider in DARIAH-DE

available, and it would have taken too much time to implement a real OAuth solution in Seafile. OAuth

has been on the Seafile roadmap in the past, but this entry has been removed.110 DARIAH-DE has a not

yet public draft, which describes how OAuth2 should be implemented for DARIAH-DE.111

For this thesis it was decided to utilize HTTP redirects to transfer a Seafile authentication token from

Seafile to the Publikator. This is kind of similar to Shibboleth, as it also makes heavy use of HTTP redirects

for login to a service provider. The Seafile authentication token is encrypted with a secret only known

107Seafile (2016b)
108Django Software Foundation (2016). https://www.djangoproject.com/
109OAuth (2016a). https://oauth.net/2/
110Seafile (2016f)
111Haase, Gietz, Widmer, Funk, & Veentjer (2016)

29

https://www.djangoproject.com/
https://oauth.net/2/

to Seafile and the Publikator. This ensures safety of the user’s Seafile data in case the token gets known

to a third party.

If a user opens the Seafile view in the Publikator, it is checked whether a Seafile authentication token is

already available in the user’s session. If not, the Publikator redirects to the Shibboleth login location

on the Seafile server112. As the location /shib-login/ requires Shibboleth authentication, this in turn

redirects to the identity provider (IDP). As the user is already logged into the Publikator, a Shibboleth

session should be available in the browser, so no further user interaction should be required. The IDP

redirects back to the location for creating a Seafile authentication token for the Publikator, which was

requested with the next parameter113.

For generating a Seafile authentication token for the Publikator a new view was added to Seahub

(the Seafile web frontend). Seahub is implemented with the web framework Django114. A Python

class named DariahPublishToken was implemented in the file views_dariah.py. In the file

seahub/api2/urls.py the class DariahPublishToken is declared to be responsible for the URL

/api2/dariah-publish-token. When this URL is accessed, Shibboleth login has already been done, and

the class DariahPublishToken has access to a Seafile authentication token for the logged in user.
This token is encrypted as a JSON Web Token (JWT)115 with a secret password only known to Seahub

and the Publikator. Now a redirect back to the Publikator happens, attaching the encrypted token as

query parameter named authToken116.

The Publikator decrypts this token with its secret password and gets access to the Seafile authentication

token. Now the Publikator is able to do Seafile API requests with the user’s credentials, such as listing

the user’s Seafile collections within the Publikator. As the redirects from the Publikator to the Seafile

server to the IDP and back are rather fast and require no user interaction, the process of authentication

token exchange is almost unnoticeable to the user.

Publikator Seafile Server IDP

request
auth token

query IDP

authorization
info (eppn)

Check Shibboleth
sessionauth token

Figure 10: Auth-flow - transfering a Seafile auth token to the Publikator with HTTP redirects

112https://sftest.de.dariah.eu/shib-login/?next=/api2/dariah-publish-token
113https://sftest.de.dariah.eu/api2/dariah-publish-token
114Django Software Foundation (2016). https://www.djangoproject.com/
115Jones, Bradley, & Sakimura (2015)
116e.g. https://de.dariah.eu/publish/-/publishgui/seafile?authToken=eyJhbGciOiJICNg[…]

30

https://www.djangoproject.com/

5.2 Seafile API Connection

Liferay is a Java based content management system (CMS), which allows writing portlets in Java and

Java Server Pages (JSP). The DARIAH-DE Publikator is a Liferay portlet, which uses Spring117 and JSP for

the parts which are rendered server-side, also providing the REST endpoints for the client application

which is written in JavaScript. The JavaScript parts of the Publikator use Ractive.js118 for databinding,

view rendering and update.

Below some lines of source code from EditCollectionView.jsp to illustrate how the JSP and the JavaScript

parts interact:

1 <portlet:resourceURL
2 id="dariahStorageLoad" var="dariahStorageLoadUrl" >
3 </portlet:resourceURL>
4 <portlet:resourceURL
5 id="dariahStorageUpdate" var="dariahStorageUpdateUrl" >
6 </portlet:resourceURL>
7

8 [...]
9 <did id="dariah-collection-edit"></div>

10 [...]
11

12 <script>
13 const i18nMap = {
14 <c:forEach items="${i18n}" var="entry">
15 '${entry.key}' : '${entry.value}',
16 </c:forEach>
17 };
18

19 const edit = new DariahCollectionEdit.default({
20 i18nMap,
21 elementId: 'dariah-collection-edit',
22 schemaUrls: [
23 '/publish-gui-portlet/schema/dariahDataobjects.ttl',
24 '/publish-gui-portlet/schema/dcelements_${language}.ttl'
25],
26 loadFileUrl: '${dariahStorageLoadUrl}&storageId=',
27 updateFileUrl: '${dariahStorageUpdateUrl}',
28 });
29 </script>

Visible in this example are JSP tags, HTML tags and JavaScript code. The JSP tags (lines 1 to 6) bind the

AJAX-request URLs from the Java backend to variables in the JSP. As the internationalization framework

117Pivotal Software, Inc. (2016). https://spring.io/
118Ractive.js (2016c). http://www.ractivejs.org/

31

https://spring.io/
http://www.ractivejs.org/

from Liferay is used, all the i18n definitions are filled into an JavaScript object (lines 13 to 17), to have

them usable from JavaScript. The decision which language is used is done by Liferay based on browser

settings or user preferences. The JavaScript class DariahCollectionEdit is responsible for showing
the metadada editor to the user. It is initialized with variables from the JSP (lines 19 to 28), like the interna-

tionalization object i18nMap, the URLs for AJAX requests, such as ${dariahStorageUpdateUrl}
and the ID of the HTML element where to render the GUI (daria-colletion-edit). What makes
this kind of JavaScript and JSP glue particularly ugly is the ambiguity of this code, as it has to be

understood well which variables are replaced by the JSP and how the resulting HTML will look like

to grasp what JavaScript will be executed. For further confusion the ECMAScript 2015119 syntax for

templating also allows variables replacement with the same notation as JSP, like ${varname}. For
this reasons the place where JavaScript and JSP meet is restricted to the JSP files, and kept as small as

possible.

The JavaScript parts of the metadata editor are based on the tgForms JavaScript module120 for displaying

metadata input forms generated from an RDF-schema. In the Publikator, tgForms was modified to

let all rendering being done by Ractive.js, used for (turtle) data loading to provide the data model

for Ractive.js. The RDF schema files for the metadata editor and the metadata which is edited by the

user are serialized, transferred and stored in the turtle RDF format. tgForms uses n3.js121 for parsing

and writing the turtle data to translate between the JavaScript objects used by Ractive.js and the RDF

serialization of this data.

Seafile offers a RESTful API for accessing its data structures.122 The data is transferred in JSON123.

A HTTP client was written to access the Seafile web API from the Publikator portlet. As high level REST

client the JAX-RS client was chosen. The JAX-RS client allows to register a Jackson124 feature, so JSON

responses from Seafile can be mapped easily to POJOS (Plain Old Java Objects). Jackson allows a Java

annotation to ignore unknown JSON Properties and only map the ones defined in the POJO:

@JsonIgnoreProperties(ignoreUnknown = true)

This allows to write Java classes for JSON mapping with only the JSON fields defined, which are needed

by the Publikator portlet.

This kind of JSON POJO mapping also has the benefit that this POJOs could be easily addressed by the

JSP. So for example a Seafile library POJO which maps the JSON field name and desc can be accessed
from JSP:

<c:forEach items="${seafileLibraries}" var="lib">
${lib.name} - ${lib.desc}

</c:forEach>
119ECMA International (2016). http://www.ecma-international.org/ecma-262/6.0/
120Riebl (2016). https://github.com/hriebl/tgForms/
121Verborgh (2016). https://github.com/RubenVerborgh/N3.js/
122Seafile (2016e)
123Bray (2014)
124Jackson Project (2016). https://github.com/FasterXML/jackson

32

http://www.ecma-international.org/ecma-262/6.0/
https://github.com/hriebl/tgForms/
https://github.com/RubenVerborgh/N3.js/
https://github.com/FasterXML/jackson

A new Spring controller was implemented, namely the SeafileViewController. The Controller cares for

providing the data, which is shown in the JSP file SeafileView.jsp, which acts as the view. If the user

chooses to add a Seafile library to the Publikator, the turtle file containing the collection description has

a predicate desribesSeafileLibrary added, with a reference to the unique ID of the Seafile library.

5.3 Views and Components Needed in Publikator Portlet

Figure 11: DARIAH-DE Publikator - Seafile disconnected

To give the user access to his/her Seafile libraries from the Publikator, some new GUI elements were

implemented. A small box was added to the main Publikator view, which informs the user about

the possibility to manage the metadata of Seafile libraries within the Publikator. This box shows the

connection state with Seafile, if there is no Seafile authentication token stored in the user’s session it

shows “disconnected” (fig. 11), “connected” (fig. 12) otherwise.

Figure 12: DARIAH-DE Publikator - Seafile connected

If the user clicks on “Connect to Seafile” the Publikator retrieves an Seafile authentication token as

described in chapter 5.1.

Clicking on “Manage Seafile Libraries” opens a view listing all the user’s libraries in Seafile with their

description, the contained files and a hint if this library is already added to the DARIAH-DE Publikator.

The user may select libraries to be added to the Publikator in this view. This is done in the SeafileView,

where the implementation was described before. Libraries already added to the Publikator show the

note “managed with the Publikator” in the title line (fig. 13).

If a Seafile library is opened with the metadata editor, a box is shown in the top right corner which also

shows the Seafile connection state, and shows a button to reload the file list from Seafile (fig. 14).

33

Figure 13: DARIAH-DE Publikator - Seafile library listing

All these Seafile related boxes in the Publikator contain a link to a help section, which explains how to

install the Seafile desktop client, and which benefits the usage of Seafile may have for the user.125

To have the file list in the edit-metadata-view synchronized with a Seafile library, the Turtle-RDF needs to

be modified by a component being aware of the state of a library in Seafile and the RDF-metadata from

the DARIAH-DE storage. This is different from the existing Publikator collections, as the RDF-metadata

for them is written and managed entirely by the JavaScript. If the user opens a DARIAH collection in the

metadata editor, the collection metadata is loaded from the REST service in RDF-turtle format. The REST

service analyzes the RDF loaded from the DARIAH storage. If the property dariah:describesSeafileLibrary

is found, it connects to the Seafile API and adds all files from the folder which is stated in the property

dariah:describesSeafileLibraryPath to the RDF. This assures that newly added files in Seafile are also

visible in the Publikator. If there are removed items in the Seafile library, which still show up in the

metadata, these items are automatically removed. This behavior also applies if an item is renamed or

moved to a subfolder, in which case the entry for the old name will be removed, and a new item without

metadata will show up. This solution is not optimal, a concept for better handling of deletion, renaming

and moving is presented in chapter 6.4.1.

To access files in Seafile, the Seafile API only offers the possibility to create download links. These

download links make use of one time access tokens. It is necessary to get hold of files stored in Seafile

from the Publikator to create the preview link, to publish files from Seafile with DH-publish and to extract

metadata embedded in files. To achieve this, a component was developed for the Publikator, which

internally requests the download link for a Seafile URI from Seafile, reads the data from the download

link and offers it to the Publish-GUI application for further use.

125Veentjer (2016c). https://sftest.de.dariah.eu/docs/

34

https://sftest.de.dariah.eu/docs/

Figure 14: DARIAH-DE Publikator - Metadata editor for a library managed by Seafile

5.4 Subcollections

An essential piece to show the benefits of file synchronization connected to the Publikator is the ability

of the Publikator to deal with subcollections. This has already been on the Publikator roadmap for quite

a while, but had not been implemented yet. So the integration of subcollections into the Publikator was

started within this thesis. Essentially, the integration reuses existing collections from the data model. The

GUI decides, if an item of type collection is found, to treat it as a subcollection. Every subcollection is a

new RDF metadata file with an unique storage ID, similar to the top level collection. The only references

to a subcollection in the parent collection are its ID and its type, for example:

dariahstorage:100 a dariah:Collection ;
dc:title "parent collection" ;
dcterms:hasPart dariahstorage:200.

dariahstorage:200 a dariah:Collection.

The other information of this subcollection, such as its title and filename or further subcollection

references, are stored in a separate file, in this example a file with the storage ID 200.

If the JavaScript part of the collection edit view finds a reference to a subcollection, it loads its contents

and adds them to the metadata model.

35

Important for the implementation of subcollections is a representation of the nested collection structure

which is easy to navigate by the user. It was decided to represent this structure in a tree view, as the

concept of browsing a hierarchy of files and collections should already be known to the user from file

system browsers like Windows Explorer. For implementing the treeview, the Javascript library jsTree126

was chosen, as it offers plugins which add functionality to the treeview like drag and drop or popup

menus. These plugins could be useful if the functionality of the tree view needs to be extended in the

future. To connect the jsTree data model and the Ractive.js data model, some glue code was needed.

On the one hand, Ractive.js needs to be notified if the tree view selection changes to show the according

metadata entry and hide the other. On the other hand, the tree view needs to know if the data model

changes, like a new title for an object or if new leafs like subcollections or files are added. For the latter,

the Ractive.js concept of observers127 and key paths128 came in handy, which allows to observe the data

model. If data changes on a specific key path the jsTree is changed in this case. To notify Ractive.js of

selection changes an event handler for jsTree was used.

Figure 15: DARIAH-DE Publikator - Treeview for subcollections

126jsTree (2006). https://www.jstree.com/
127Ractive.js (2016b). http://docs.ractivejs.org/latest/observers
128Ractive.js (2016a). http://docs.ractivejs.org/latest/keypaths

36

https://www.jstree.com/
http://docs.ractivejs.org/latest/observers
http://docs.ractivejs.org/latest/keypaths

5.4.1 Seafile Specific Additions for Subcollection Handling

Subdirectories on the users hard disk, synchronized with Seafile, are mapped to subcollections in the

Publikator. This is reflected in the RDF metadata by an entry like:

dariah:describesSeafileLibraryPath "/subdir/"

The root collection just has the “/” set as library path. Additionally, the property dariah:describesSeafileLi-

brary is set for every collection, so the metadata for a subcollection may be represented like this:

dariahstorage:377555 a dariah:Collection ;
dariah:describesSeafileLibrary

seafile:a16ea413-e7ff-4337-92d7-ecee62a24dd7 ;
dariah:describesSeafileLibraryPath "/subdir/" ;
dc:title "subdir".

So the REST service which handles the RDF data loading129 knows which subfolder of a Seafile library

needs to be checked for changes.

Figure 16: DARIAH-DE Publikator - extracted image metadata

5.5 Automated Metadata Extraction

As use case 1. describes the benefits of automated metadata extraction, the implementation was added

to the Publikator within this thesis (fig. 16). The implementation uses Apache Tika130 for extracting

129see chapter 5.3
130Apache Tika (2016a)

37

metadata of files referenced within a collection. On adding a file in the Publikator the file is parsed by

a Tika autoparser, trying to extract information like dc:title, dc:creator and GPS data from the file. If

metatada is extracted, it is added with the corresponding Dublin Core metadata terms to the data object

in the Publikator. Tika provides metadata extraction for various file formats out of the box.131 Office

documents and PDF files often contain metadata of the title, the creator and the date as metadata,

while photos may contain GPS information and a timestamp, which can be extracted by Tika.

5.6 Publish to the DARIAH-DE Repository

To allow the publication of data from Seafile, a RESTful webservice named seafile-dhpublish-connector

was written.132 It uses the JAX-RS implementation of CXF and is setup with Spring. It is mainly used to

provide files managed by Seafile in a downloadable form for the DH-publish service. The service has

the URL https://sftest.de.dariah.eu/files/ and the following main method annotation:

@GET
@Path("/{seafileId}")
public Response getFile(

@PathParam("seafileId") String seafileId,
@HeaderParam("Authorization") String authHeader,
@QueryParam("token") String token
)

So it takes the parameter seafileId from the URL, and also an authorization token, which may either

be in a query parameter token or be transferred in the authorization header of the HTTP call. If the
Seafile access token is send in the authorization header, it is written in the following form:

Authorization: bearer THIsIsAsECRETtOKEN

This is similar to the way OAuth2 access tokens are transferred in between services utilizing the PDP in

DARIAH-DE.133

If a user clicks on “publish” in the publish GUI, the Seafile authorization token is handed over to DH-

publish. DH-publish had to be modified, so that it knows that this token has to be used if a file from

https://sftest.de.dariah.eu/files/ is retrieved for publication. This implementation on
DH-publish side was done by its maintainer Stefan E. Funk.

When DH-publish finds a reference to a data file like seafile:rEALLYlONGiD, it requests this file from
https://sftest.de.dariah.eu/files/rEALLYlONGiD and adds the authorization token to
the header. The seafile-dhpublish-connector service can then gather the information in which Seafile

131Apache Tika (2016b)
132Veentjer (2016a). https://projects.gwdg.de/projects/seafile-dhpublish-connector/repository
133see chapter 2.3 and Haase et al. (2016)

38

https://projects.gwdg.de/projects/seafile-dhpublish-connector/repository

library and which path the file resides from the ID.134 The service decodes the authentication token

with its secret key and then gets the download link from the Seafile REST API to stream the file to

DH-publish.

The seafile-dhpublish-connector is the final missing piece which had to be implemented to have the

complete possibility to manage and publish data from Seafile to the DARIAH-DE repository. All the

other functionality like getting PIDs for the data or registering the publication with the collection registry

just works the same way as with data residing in the DARIAH-DE storage.

6 Validation of the Implementation

In this chapter the use cases from the beginning are revisited, to check if all requirements from the use

cases are matched by the implementation done within this thesis.

6.1 Use Case 1 - Data Publication of Existing Research Data

Bob wants to do a data publication of files located on his hard disk. Using the Seafile integration for the

DARIAH-DE Publikator eases the process for him. After installing the Seafile client software, he adds

the server address for the DARIAH-DE Seafile service. Then he logs in with his DARAH-DE Shibboleth

credentials. Now he is ready to take a folder from his hard disk and drop it onto the drop zone of his

Seafile desktop client. He is asked for a library name, and his files and subfolders get synchronized with

the Seafile server.

After synchronization is finished, Bob opens the DARIAH-DE Publikator and is able to select his newly

created Seafile library for metadata annotation. He finds all his files and the directory structure organized

in subcollections. Some descriptive metadata, like dc:creator and dc:title, is already extracted from the

files (e.g. PDF documents). He is now able to change these metadata fields or add even more metadata.

He is always able to look into the source documents from the Publikator hitting the “view file” button.

Doing this, Bob finds a spelling mistake in one of his files. He opens the document with his spreadsheet

program, and corrects the mistake. Seafile takes care of synchronizing the new version of the file, so it

reaches the Publikator without further interaction by Bob necessary.

Finally, he publishes his data into the DARIAH-DE repository using the “publish collection” button

from the Publikator. After publication is finished, he can use the PIDs to reference his data from his

publication.

So the implementation done within this thesis helps Bob to quicker reach his goal of publishing his

research data. He benefits from tools like metadata extraction, and synchronization of changes in his

documents.

134see chapter 4.1.1

39

6.2 Use Case 2 - Backup, Metadata for Research Data and Metadata Extraction

Alice wants to add metadata to her research data files early in the research process. She wants to have

the newest version of the file available in the Publikator without caring too much about the upload

process. The embedded GPS coordinates and timestamps of the photos she takes with her smartphone

shall be usable in the Publikator. Also she needs a backup solution for her files.

Alice installs the Seafile desktop client on her notebook and the Seafile mobile client on her smartphone.

This allows her to drop the folder with her research data from her notebook into the Seafile client, to

have it available in the Publikator. In the mobile client she defines a subfolder of her research data

library as a target for automated photo upload.

Now Seafile takes care about synchronizing the data from her notebook and her mobile phone every

time Alice has network access. With network access, she is able to describe her files with appropriate

metadata. The GPS location and time stamp information extracted from her photos help her to put the

files in context. Knowing that the data is stored at a provider she trusts, and the internet connection is

secured using strong SSL encryption, gives Alice a secure feeling.

Back from her research trip she has already done the groundwork for her data publication.

The implementation done within this thesis helps Alice, as she has a cloud-based backup solution for

her files, which at the same time allowed her to start adding metadata to her data early in the research

process. Using file synchronization is a benefit in her case, as she did not have to find out herself which

data was already copied to the cloud, when she gained network access.

Years later, another researcher is able to locate Alice’s research data in the DARIAH-DE repository, as

the geographical coordinates and the Dublin Core terms and keywords from the metadata allow very

precise searching. He is able to cite her data using PIDs and has the guarantee that the data referenced

by these URIs stays accessible. So the high quality of the metadata and the persistent nature of the

DARIAH-DE repository enriches the research process far beyond Alice’s research project.

6.3 Use Case 3 - Collaboration

For collaborating on a paper, Bob needs access to the data Alice collects in Vietnam. Alice logs into the

Seafile web interface, opens her Vietnam research data library and clicks on “share”. Now she is able to

identify Bob by his DARIAH-DE account name, and give him access to her library. This library shows up

in Bobs Seafile desktop client now, and he is able to synchronize it to his hard disk. Unfortunately, he is

not able to view the DC metadata Alice added to the data, as the DARIAH-DE Publikator does not yet

allow collaboration in groups, and Alice did not publish her data yet.

So the Publikator Seafile connection partially helped the collaboration of Alice and Bob, but would be

much more convenient if Bob also was able to view the metadata Alice added in the Publikator. To

implement group management in the Publikator, the DARIAH-DE AAI would need group management

for the DARIAH-DE own storage beforehand. This is on the roadmap for the AAI, so collaboration in

groups may be added to the Publikator later on. Seafile already has group support, it is yet to find out

if these may also be Shibboleth groups.

40

6.4 Possible Future Work

6.4.1 Tracking Renaming and Removal of Files and Subfolders

The handling of moving, removing or renaming files implemented within this thesis is not very user

friendly. If in he current implementation a file or subcollection is not found with its former path or name

this is handled as a removal. In consequence the metadata for this file is silently removed from the

storage without any user interaction or notification. The worst case which may occur here would be a

user who has manually added metadata to a bunch of files renaming a subcollection, in which case all

the work would have to be done again, although the files are still there.

A better implementation is possible and may rely on the Seafile API for file history135. A little test of this

API and a directory renaming from subfolder1 to subfolder2 shows the following history for a file test1.txt

residing in this directory:

$ curl -H 'Authorization: Token sECRETtOKEN' \
https://sftest.de.dariah.eu/api2/repos/95c7bdc2-c93d-4fbb-a9cf\
/file/history/?p=/subfolder2/test1.txt

{"commits": [
{ ...

"desc": "Renamed \"subfolder1\".\n",
...
"rev_renamed_old_path": "subfolder1/test1.txt",
...

},{ ...
"desc": "Added or modified \"test1.txt\".\n",
...
"rev_renamed_old_path": null,
...

}
]}

The previous path of the file subfolder1/test1.txt is tracked in the history of subfolder2/test1.txt in the

property rev_renamed_old_path. A renaming of test1.txt to test2.txt is also trackable with the

rev_renamed_old_path JSON key.

If a subfolder (or a file) is renamed, the Publikator-Seafile backend finds some deleted and some new

entries. By checking the history of the new files it can find the references to the old entries and re-add

the matching metadata accordingly.

This still would not help if a file or folder is really removed from Seafile. Possibly, the user moved it

out accidentally or on purpose to re-add it later. In this case it would also be nicer of the Publikator

135Seafile (2016e). http://manual.seafile.com/develop/web_api.html#get-file-history

41

http://manual.seafile.com/develop/web_api.html#get-file-history

to not drop the metadata. The service could, instead of dropping the metadata silently, in this case

communicate with the user and give the possibility to re-attach the unbound metadata to files in a later

stage, or really drop it. This would require some further work on the GUI.

6.4.2 Seafile Drive Client

While this thesis was being finalized, Seafile Ltd. announced the availability of their Drive client:

“Conceptually, the Drive client extends your local disk space with the massive storage

capacity on your Seafile server.”136

The basic idea is that the Seafile libraries are mapped to a virtual storage drive in the file system of the

user. But different from the way the software works until now, not all files are downloaded to the users

drive. While the users are able so see the whole remote file system, only the files they decide to work

on get downloaded. Other than with network drive solutions like WebDAV, NFS or Windows shares

the data is still editable without network connection and gets synchronized to the server when back

online.

Dropbox announced a similar concept called “Project Infinite” in April 2016.137. The solution from

Dropbox requires a module running in kernel mode138, which means that it gains access to the whole

system, while the normal Dropbox client only runs with the permissions of the user who installed it.

Seafile tries to achieve the same goals with the software still running in user mode, which is performing

nicer with data privacy and security.

The Seafile drive client should enhance the usability Seafile on client side, and also allows for further

interesting use cases like “Writing large scientific data directly to Seafile server.”139 As it is a client side

development, using the Seafile drive client with the Publikator does not need further implementation

on the Publikator side. Users should be able to use the Seafile drive client instead of or additionally to

the normal Seafile desktop client.

6.4.3 Client Side Encryption

It would be a big benefit in regards to privacy and security, if the Publikator could work with Seafile

libraries which are saved on the synchronization server with client side encryption enabled. There was

no further research done on this issue within this thesis, as the use of client side encrypted libraries and

data publication seem to be contradictionary on the first look. But with the goal to allow metadata

annotation as early as possible in the data collection phase, there may be the legitimate requirement to

keep the data locked until publication.

136Seafile (2016a)
137Dropbox Inc. (2016a). https://blogs.dropbox.com/business/2016/04/announcing-project-infinite/
138Clarke (2016). http://www.theregister.co.uk/2016/05/26/dropbox_kernel_access/
139Seafile (2016a)

42

https://blogs.dropbox.com/business/2016/04/announcing-project-infinite/
http://www.theregister.co.uk/2016/05/26/dropbox_kernel_access/

Seafile allows client side encryption, which means that the data may only bee seen on the client were

a password is entered, but it is not visible to the server administrator. As some testing has shown it

is possible to view the folder structure and the filenames with the Seafile web API.140 This may be a

drawback for some use cases of client side encryption, as file names may tell a lot about what content a

user is synchronizing. Still for the implementation of a publishing workflow this behavior may be useful,

as also encrypted files may be annotated with metadata in this case.

Still there are further things to be investigated, as how to seamlessly decrypt files on publication. In

this case a password would need to be entered and handed over to the DH-publish service. Also the

“feature” this would be based on is a bug on the tracker141, so the metadata leakage, such an approach

would be based on, may be removed in future.

Also a security audit would have to take place, to give a proper statement how secure the usage of

client side encryption is and what limitations may apply.

7 Conclusion

For the abstract idea of a research data lifecycle to be put into practice the perspective of the information

science has to meet the requirements of the target group, in this case digitally working researchers in

the Arts and Humanities. This may look like “more work” for the researcher in the first place. But it is

an agreed fact that reuse of scientific data fosters research on a long run. A task for the information

sciences is to provide tools for researchers to ease the process of data preparation for publication. This

could only be done by looking into the requirements of the target group, and observe how it is working

with digital data. The Publikator in the DARIAH-DE project was build for this reasons. The development

of this tool was based on theoretical ground works done within DARIAH-DE, like the definition of a

research data lifecycle and how it matches the workflow of digitally working humanists.142

This thesis took a deeper look at one crucial part of the research data lifecycle, how and when to prepare

the data for publication. The outcome of this thesis is an extension of the publishing workflow, in a

way that research data can be enriched with metadata for publication earlier in the research process.

While the software developed in this thesis is in a prototype state, it covers large parts of the use cases

and allows testing the initial idea. To have files from hard disk available for metadata addition early

in the research process serves a requirement of the researchers. Being able to view the actual state

of the files and work on their metadata any time in the research process, and not having to manually

synchronize the state on hard disk with that in the web browser is a large benefit. This is a task file

synchronization software is already doing very well, as its explicitly good in tracking state changes in

different locations.

140see ef4 (2016)
141ef4 (2016)
142see chapter 2.6

43

Abbreviations

AAI - Authorization and Authentication Infrastructure

AES - Advanced Encryption Standard

AJAX - Asynchronous JavaScript and XML

API - Application Programming Interface

DARIAH - Digital Research Infrastructure for the Arts and Humanities

CD-ROM - Compact Disc Read-Only Memory

CMS - Content Management System

CPU - Central Processing Unit

DC - Dublin Core

DFN - Deutsches Forschungsnetzwerk

DFG - Deutsche Forschungsgemeinschaft

DVD - Digital Versatile Disc

EPIC - European Persistent Identifier Consortium

GUI - Graphical User Interface

GPS - Global Positioning System

GWDG - Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen

HTTP - Hypertext Transfer Protocol

ID - Identifier

IDP - Identity Provider

IRI - Internationalized Resource Identifier

JSF - Java Server Faces

JSON - JavaScript Object Notation

JWT - JSON Web Token

LDAP - Lightweight Directory Access Protocol

NFS - Network File System

NSA - National Security Agency

OASIS - Organization for the Advancement of Structured Information Standards

OCS - Open Collaboration Services

44

PC - Personal Computer

PDF - Portable Document Format

PID - Persistent Identifier

POJO - Plain Old Java Object

RAM - Random Access Memory

RDF - Resource Description Framework

REST - Representational State Transfer

SHA - Secure Hash Algorithm

SP - Service Provider

SSL - Secure Sockets Layer (old, now: TLS)

SSO - Single Sign On

SAML - Security Assertion Markup Language

TLS - Transport Layer Security

URI - Uniform Resource Identifier

URL - Uniform Resource Locator

W3C - World Wide Web Consortium

XML - Extensible Markup Language

45

List of Figures

1 DARIAH-DE Repository . 10

2 Screenshot of the DARIAH-DE Publikator in February 2016 11

3 Data model of the Publikator . 12

4 DDI Research Data Lifecycle . 17

5 Research Data Lifecycle with the Publikator and file synchronization (FileSync) 17

6 Dropbox desktop client - popup dialog for tray icon 20

7 ownCloud desktop client - popup dialog for tray icon 21

8 ownCloud desktop client - settings screen . 22

9 Seafile desktop client - user interface with drop zone for adding new libraries 23

10 Auth-flow - transfering a Seafile auth token to the Publikator with HTTP redirects 30

11 DARIAH-DE Publikator - Seafile disconnected . 33

12 DARIAH-DE Publikator - Seafile connected . 33

13 DARIAH-DE Publikator - Seafile library listing . 34

14 DARIAH-DE Publikator - Metadata editor for a library managed by Seafile 35

15 DARIAH-DE Publikator - Treeview for subcollections 36

16 DARIAH-DE Publikator - extracted image metadata 37

46

Bibliography

Apache Software Foundation. (2004). Apache License Version 2.0. Retrieved September 13, 2016, from

https://www.apache.org/licenses/LICENSE-2.0

Apache Tika. (2016a). Apache TikaWebsite. Retrieved September 7, 2016, from https://tika.apache.org/

Apache Tika. (2016b). Apache Tika: Supported Document Formats. Retrieved September 7, 2016, from

https://tika.apache.org/1.12/formats.html

Balasubramaniam, S., & Pierce, B. C. (1998). What is a file synchronizer? In Fourth Annual ACM/IEEE

International Conference on Mobile Computing and Networking (MobiCom ’98). Retrieved from http:

//www.cis.upenn.edu/~bcpierce/papers/snc.ps

Becket, D., Berners-Lee, T., Prud’hommeaux, E., & Carothers, G. (2014). RDF 1.1 Turtle - Terse RDF Triple

Language. Retrieved September 7, 2016, from http://www.w3.org/TR/turtle/

Bray, T. (2014). The JavaScript Object Notation (JSON) Data Interchange Format (RFC No. 7159). RFC

Editor; Internet Requests for Comments; RFC Editor. Retrieved from http://www.rfc-editor.org/rfc/

rfc7159.txt

Brickley, D., & Guha, R. (2014). RDF Schema 1.1. Retrieved September 7, 2016, from https://www.w3.org/

TR/rdf-schema/

Clarke, G. (2016). Dropbox gets all up in your kernel with Project Infinite. The Register. Retrieved from

http://www.theregister.co.uk/2016/05/26/dropbox_kernel_access

DARIAH-DE. (2016a). About DARIAH-DE. Retrieved August 15, 2016, from https://de.dariah.eu/dariah-

de-english

DARIAH-DE. (2016b). Collection Registry. Retrieved September 7, 2016, from https://de.dariah.eu/

collection-registry

DARIAH-DE. (2016c). DARIAH-DE Publikator website. Retrieved September 7, 2016, from https://de.

dariah.eu/publish

DARIAH-DE. (2016d). DARIAH-DE Website. Retrieved September 7, 2016, from https://de.dariah.eu

DARIAH-DE. (2016e). DARIAH-DE-Wiki: DARIAH AAI Documentation. Retrieved September 7, 2016,

from https://wiki.de.dariah.eu/display/publicde/DARIAH+AAI+Documentation

DARIAH-DE. (2016f). DARIAH-DE: Autorisierungs- und Authentifizierungs-Infrastruktur. Retrieved

September 7, 2016, from https://de.dariah.eu/aai

DARIAH-DE. (2016g). DARIAH-DE: Forschungsdaten in DARIAH-DE. Retrieved September 15, 2016, from

https://de.dariah.eu/forschungsdaten

DARIAH-DE. (2016h). DARIAH-DE: Information Flyer - English. Retrieved September 15, 2016, from

https://de.dariah.eu/documents/10180/411593/DARIAH-Pentagon-Klappflyer-EN-1.5.pdf

DARIAH-DE. (2016i). DARIAH-DE: Research Data Lifecycle – Der Forschungsdatenzyklus in DARIAH-DE.

47

https://www.apache.org/licenses/LICENSE-2.0
https://tika.apache.org/
https://tika.apache.org/1.12/formats.html
http://www.cis.upenn.edu/~bcpierce/papers/snc.ps
http://www.cis.upenn.edu/~bcpierce/papers/snc.ps
http://www.w3.org/TR/turtle/
http://www.rfc-editor.org/rfc/rfc7159.txt
http://www.rfc-editor.org/rfc/rfc7159.txt
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
http://www.theregister.co.uk/2016/05/26/dropbox_kernel_access
https://de.dariah.eu/dariah-de-english
https://de.dariah.eu/dariah-de-english
https://de.dariah.eu/collection-registry
https://de.dariah.eu/collection-registry
https://de.dariah.eu/publish
https://de.dariah.eu/publish
https://de.dariah.eu
https://wiki.de.dariah.eu/display/publicde/DARIAH+AAI+Documentation
https://de.dariah.eu/aai
https://de.dariah.eu/forschungsdaten
https://de.dariah.eu/documents/10180/411593/DARIAH-Pentagon-Klappflyer-EN-1.5.pdf

Retrieved September 15, 2016, from https://de.dariah.eu/research-data-lifecycle

DARIAH-DE. (2016j). Das DARIAH-DE Repositorium. Retrieved September 21, 2016, from https://wiki.de.

dariah.eu/display/publicde/Das+DARIAH-DE+Repositorium

DARIAH-DE. (2016k). DataObjects RDF-Schema for Publikator. Retrieved September 7, 2016, from

http://de.dariah.eu/rdf/dataobjects/terms/

DARIAH-DE. (2016l). Generische Suche. Retrieved September 7, 2016, from https://de.dariah.eu/

generische-suche

DARIAH-DE. (2016m). Git repository for the Publikator. Retrieved September 13, 2016, from https:

//projects.gwdg.de/projects/publish-gui-portlet/repository

DARIAH-DE. (2016n). Kriterien für die Integration von Tools und Diensten in die DARIAH-DE-Infrastruktur.

Retrieved September 7, 2016, from https://de.dariah.eu/kriterien-toolintegration

DARIAH-DE. (2016o). Nachhaltige Referenzierung von Digitalen Objekten mit Hilfe von persistenten

Identifikatoren (PID). Retrieved September 7, 2016, from https://de.dariah.eu/pid-service

DARIAH-DE. (2016p). Nachhaltige Referenzierung von Digitalen Objekten mit Hilfe von persistenten

Identifikatoren (PID). Retrieved September 25, 2016, from https://de.dariah.eu/pid-service

DARIAH-EU. (2016). DARIAH in a Nutshell: By Researchers for Researchers. Retrieved September 25,

2016, from http://dariah.eu/about.html

DCMI Usage Board. (2012). DCMI Metadata Terms. Retrieved September 7, 2016, from http://dublincore.

org/documents/2012/06/14/dcmi-terms/

DDI Structural Reform Group. (2004). DDI Version 3.0 Conceptual Model. Retrieved September 8, 2016,

from http://opendatafoundation.org/ddi/srg/Papers/DDIModel_v_4.pdf

Deutsche Forschungsgemeinschaft (DFG). (2014). Cloud-Dienste — Addendum zu den Empfehlungen

der Kommission für IT Infrastruktur. Retrieved September 8, 2016, from http://www.dfg.de/download/

pdf/foerderung/programme/wgi/addendum_cloud_dienste_kfr_2014.pdf

Deutsche Nationalbibliothek (DNB). (2016). Datendienst “Bibliografische Dienstleistungen” - Norm-

daten in RDF. Retrieved September 17, 2016, from http://datendienst.dnb.de/cgi-bin/mabit.pl?userID=

opendata&pass=opendata&cmd=login

Deutsches Forschungsnetz (DFN). (2016). DFN-AAI - Authentifikations- und Autorisierungs-Infrastruktur.

Retrieved September 12, 2016, from https://www.aai.dfn.de/

Django Software Foundation. (2016). django Website. Retrieved September 17, 2016, from https:

//www.djangoproject.com/

Donauer, J. (2015). Benchmark: ownCloud gegen Seafile – wer synchronisiert schneller? BITblokes.

Blog. Retrieved from https://www.bitblokes.de/2015/01/benchmark-owncloud-gegen-seafile-wer-

synchronisiert-schneller/

Dropbox Inc. (2016a). A revolutionary new way to access all your files – Dropbox announcement of

Projectb Infinite. Retrieved September 26, 2016, from https://blogs.dropbox.com/business/2016/04/

48

https://de.dariah.eu/research-data-lifecycle
https://wiki.de.dariah.eu/display/publicde/Das+DARIAH-DE+Repositorium
https://wiki.de.dariah.eu/display/publicde/Das+DARIAH-DE+Repositorium
http://de.dariah.eu/rdf/dataobjects/terms/
https://de.dariah.eu/generische-suche
https://de.dariah.eu/generische-suche
https://projects.gwdg.de/projects/publish-gui-portlet/repository
https://projects.gwdg.de/projects/publish-gui-portlet/repository
https://de.dariah.eu/kriterien-toolintegration
https://de.dariah.eu/pid-service
https://de.dariah.eu/pid-service
http://dariah.eu/about.html
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://opendatafoundation.org/ddi/srg/Papers/DDIModel_v_4.pdf
http://www.dfg.de/download/pdf/foerderung/programme/wgi/addendum_cloud_dienste_kfr_2014.pdf
http://www.dfg.de/download/pdf/foerderung/programme/wgi/addendum_cloud_dienste_kfr_2014.pdf
http://datendienst.dnb.de/cgi-bin/mabit.pl?userID=opendata&pass=opendata&cmd=login
http://datendienst.dnb.de/cgi-bin/mabit.pl?userID=opendata&pass=opendata&cmd=login
https://www.aai.dfn.de/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.bitblokes.de/2015/01/benchmark-owncloud-gegen-seafile-wer-synchronisiert-schneller/
https://www.bitblokes.de/2015/01/benchmark-owncloud-gegen-seafile-wer-synchronisiert-schneller/
https://blogs.dropbox.com/business/2016/04/announcing-project-infinite/
https://blogs.dropbox.com/business/2016/04/announcing-project-infinite/
https://blogs.dropbox.com/business/2016/04/announcing-project-infinite/

announcing-project-infinite/

Dropbox Inc. (2016b). Dropbox Blog: Celebrating half a billion users. Retrieved September 20, 2016,

from https://blogs.dropbox.com/dropbox/2016/03/500-million/

Dropbox Inc. (2016c). Dropbox Help: Can I have Dropbox sync files outside my Dropbox folder?

Retrieved September 17, 2016, from https://www.dropbox.com/help/12

Dropbox Inc. (2016d). Dropbox Help: Can I specify my own private key for my Dropbox? Retrieved

September 17, 2016, from https://www.dropbox.com/help/28

Dropbox Inc. (2016e). Dropbox Help: How secure is Dropbox? Retrieved September 17, 2016, from

https://www.dropbox.com/help/27

Dropbox Inc. (2016f). Dropbox Help: What’s a conflicted copy? Retrieved September 17, 2016, from

https://www.dropbox.com/help/36

Dropbox Inc. (2016g). Dropbox Website. Retrieved September 17, 2016, from https://www.dropbox.

com/

Dropbox Inc. (2016h). Dropbox: Core API. Retrieved September 17, 2016, from https://www.dropbox.

com/developers-v1/core/docs

Dunn, S. (2008). Dropbox File Sync Service. The Washington Post. Retrieved from http://www.

washingtonpost.com/wp-dyn/content/article/2008/08/01/AR2008080100260.html

Dyllick-Brenzinger, C. (2015). ownCloud vs Seafile – Performance. ionas Blog. Blog. Retrieved from

https://www.ionas-server.com/blog/owncloud-vs-seafile-performance/

ECMA International. (2016). Standard ECMA-262 - ECMAScript 2015 Language Specification (6.0).

Retrieved from http://www.ecma-international.org/ecma-262/6.0/

ef4. (2016). Encrypted libraries leak lots of information — Seafile bug tracker. Retrieved September 25,

2016, from https://github.com/haiwen/seafile/issues/350

Funk, S. E. (2010). Digitale Objekte und Formate. In H. Neuroth, A. Oßwald, Scheffel R, S. Strathmann, & K.

Huth (Eds.), nestor Handbuch: Eine kleine Enzyklopädie der digitalen Langzeitarchivierung (pp. 140–145).

Boizenburg: Verlag Werner Hülsbusch,

Funk, S. E., & Schmunk, S. (2015). DARIAH-DE Repositorium – Prototyp (M 4.3.2.1). Retrieved Au-

gust 9, 2016, from https://dev2.dariah.eu/wiki/download/attachments/14651583/M%204.3.2.1-DARIAH-

Repositorium-Prototyp-final.pdf

Funk, S. E., Gietz, P., Haase, M., Harms, P., Aschenbrenner, A., Tonne, D., & Rybicki, J. (2012). DARIAH

Storage API – A Basic Storage Service API on Bit Preservation Level. Retrieved September 7, 2016, from

49

https://blogs.dropbox.com/business/2016/04/announcing-project-infinite/
https://blogs.dropbox.com/business/2016/04/announcing-project-infinite/
https://blogs.dropbox.com/business/2016/04/announcing-project-infinite/
https://blogs.dropbox.com/dropbox/2016/03/500-million/
https://www.dropbox.com/help/12
https://www.dropbox.com/help/28
https://www.dropbox.com/help/27
https://www.dropbox.com/help/36
https://www.dropbox.com/
https://www.dropbox.com/
https://www.dropbox.com/developers-v1/core/docs
https://www.dropbox.com/developers-v1/core/docs
http://www.washingtonpost.com/wp-dyn/content/article/2008/08/01/AR2008080100260.html
http://www.washingtonpost.com/wp-dyn/content/article/2008/08/01/AR2008080100260.html
https://www.ionas-server.com/blog/owncloud-vs-seafile-performance/
http://www.ecma-international.org/ecma-262/6.0/
https://github.com/haiwen/seafile/issues/350
https://dev2.dariah.eu/wiki/download/attachments/14651583/M%204.3.2.1-DARIAH-Repositorium-Prototyp-final.pdf
https://dev2.dariah.eu/wiki/download/attachments/14651583/M%204.3.2.1-DARIAH-Repositorium-Prototyp-final.pdf

https://dev2.dariah.eu/wiki/download/attachments/10618851/DARIAH-Storage-API-v1.0_final.pdf

Gartner, Inc. (2016). Gartner Says Worldwide Smartphone Sales Grew 3.9 Percent in First Quarter of

2016. Retrieved September 17, 2016, from http://www.gartner.com/newsroom/id/3323017

Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen (GWDG). (2016). GWDG Homepage.

Retrieved September 24, 2016, from https://www.gwdg.de/

Göbel, M., Grupe, N., Heise, C., Köhlmann, M., Meyer, K., Neuschäfer, M., … Söring, S. (2015).

DARIAH-DE und TextGrid - Disseminationsstrategie inklusive Marketingkonzept sowie DARIAH-DE Open

Mission Statement und Publikationsstrategie. Retrieved from https://dev2.dariah.eu/wiki/download/

attachments/14651583/DARIAH-TextGrid-Disseminationskonzept.pdf

Greenwald, G., & MacAskill, E. (2013). NSA Prism program taps in to user data of Apple, Google and

others. The Guardian. Retrieved from http://www.theguardian.com/world/2013/jun/06/us-tech-giants-

nsa-data

Guy, M., Powell, A., & Day, M. (2004). Improving the quality of metadata in Eprint archives. Ariadne, (38).

Retrieved from http://www.ariadne.ac.uk/issue38/guy

Haase, M., Gietz, P., Widmer, M., Funk, S. E., & Veentjer, U. (2016). Einbindung von RESTlike Web

Services in eine SAML-basierte Föderation mit OAuth2. DARIAH-DE; Draft; not yet published as of

23-September-2016; DAASI.

Heckel, P. C. (2012). Minimizing remote storage usage and synchronization time using deduplication

and multichunking: Syncany as an example. Retrieved September 12, 2016, from https://web.archive.

org/web/20130508153942/http://www.philippheckel.com/files/syncany-heckel-thesis.pdf

Jackson Project. (2016). Jackson Project Home @github. Retrieved September 17, 2016, from https:

//github.com/FasterXML/jackson

JCP. (2003). JSR 168: Portlet Specification. Retrieved September 7, 2016, from https://jcp.org/en/jsr/

detail?id=168

Jones, M., Bradley, J., & Sakimura, N. (2015). JSON Web Token (JWT) (RFC No. 7519). RFC Editor; Internet

Requests for Comments; RFC Editor. Retrieved from http://www.rfc-editor.org/rfc/rfc7519.txt

Josefsson, S. (2006). The Base16, Base32, and Base64 Data Encodings (RFC No. 4648). RFC Editor;

Internet Requests for Comments; RFC Editor. Retrieved from http://www.rfc-editor.org/rfc/rfc4648.txt

jsTree. (2006). jsTree Website. Retrieved September 8, 2016, from https://www.jstree.com/

Karlitschek, F. (2013). Draft Specification: Open Collaboration Services v1.7. Retrieved March 25, 2016,

from https://www.freedesktop.org/wiki/Specifications/open-collaboration-services-1.7/

Karlitschek, F. (2016). Nextcloud. Blog of Frank Karlitschek. Blog. Retrieved from http://karlitschek.de/

2016/06/nextcloud/

Liferay Inc. (2016). Liferay website. Retrieved September 7, 2016, from https://www.liferay.com/

Nextcloud GmbH. (2016). Nextcloud Homepage. Retrieved September 25, 2016, from https://nextcloud.

50

https://dev2.dariah.eu/wiki/download/attachments/10618851/DARIAH-Storage-API-v1.0_final.pdf
http://www.gartner.com/newsroom/id/3323017
https://www.gwdg.de/
https://dev2.dariah.eu/wiki/download/attachments/14651583/DARIAH-TextGrid-Disseminationskonzept.pdf
https://dev2.dariah.eu/wiki/download/attachments/14651583/DARIAH-TextGrid-Disseminationskonzept.pdf
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.ariadne.ac.uk/issue38/guy
https://web.archive.org/web/20130508153942/http://www.philippheckel.com/files/syncany-heckel-thesis.pdf
https://web.archive.org/web/20130508153942/http://www.philippheckel.com/files/syncany-heckel-thesis.pdf
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://jcp.org/en/jsr/detail?id=168
https://jcp.org/en/jsr/detail?id=168
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
https://www.jstree.com/
https://www.freedesktop.org/wiki/Specifications/open-collaboration-services-1.7/
http://karlitschek.de/2016/06/nextcloud/
http://karlitschek.de/2016/06/nextcloud/
https://www.liferay.com/
https://nextcloud.com/
https://nextcloud.com/
https://nextcloud.com/

com/

NISO. (2004). Understanding Metadata. Retrieved September 18, 2016, from http://www.niso.org/

publications/press/UnderstandingMetadata.pdf

OASIS. (2016). OASIS:SAML. Retrieved September 12, 2016, from http://www.oasis-open.org/committees/

security

OAuth. (2016a). OAuth 2.0. Retrieved September 12, 2016, from https://oauth.net/2/

OAuth. (2016b). OAuth Homepage. Retrieved September 12, 2016, from https://oauth.net/

Oracle. (2016). Deflater Java API. Retrieved September 13, 2016, from https://docs.oracle.com/javase/8/

docs/api/java/util/zip/Deflater.html

ownCloud. (2016a). Encryption Configuration — ownCloud 8.1 Server Administration Manual. Re-

trieved September 25, 2016, from https://doc.owncloud.org/server/8.1/admin_manual/configuration_

files/encryption_configuration.html

ownCloud. (2016b). External API — ownCloud Developer Manual 8.1 documentation. Retrieved

September 25, 2016, from https://doc.owncloud.org/server/8.1/developer_manual/core/externalapi.

html

ownCloud. (2016c). Features — ownCloud Website. Retrieved September 25, 2016, from https://

owncloud.org/features/

ownCloud. (2016d). ownCloud Website. Retrieved September 25, 2016, from https://owncloud.org/

ownCloud GmbH. (2016). Features — ownCloud.com Website. Retrieved September 25, 2016, from

https://owncloud.com/features/

Pivotal Software, Inc. (2016). Spring Website. Retrieved September 7, 2016, from https://spring.io/

Puhl, J., Andorfer, P., Höckendorff, M., Schmunk, S., Stiller, J., & Thoden, K. (2015). Diskussion und

Definition eines Research Data LifeCycle für die digitalen Geisteswissenschaften. Retrieved from http:

//webdoc.sub.gwdg.de/pub/mon/dariah-de/dwp-2015-11.pdf

Ractive.js. (2016a). Ractive.js Documentation — Keypaths. Retrieved September 8, 2016, from http:

//docs.ractivejs.org/latest/keypaths

Ractive.js. (2016b). Ractive.js Documentation — Observers. Retrieved September 8, 2016, from http:

//docs.ractivejs.org/latest/observers

Ractive.js. (2016c). Ractive.js Website. Retrieved September 8, 2016, from http://www.ractivejs.org/

Riebl, H. (2016). Git repository for tgForms. Retrieved September 7, 2016, from https://github.com/

hriebl/tgForms/

Romanello, M., Stiller, J., & Thoden, K. (2015). Usability Criteria for External Requests of Collaboration

(R 1.2.2/R 7.5). Retrieved September 7, 2016, from https://dev2.dariah.eu/wiki/download/attachments/

51

https://nextcloud.com/
https://nextcloud.com/
https://nextcloud.com/
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://www.oasis-open.org/committees/security
http://www.oasis-open.org/committees/security
https://oauth.net/2/
https://oauth.net/
https://docs.oracle.com/javase/8/docs/api/java/util/zip/Deflater.html
https://docs.oracle.com/javase/8/docs/api/java/util/zip/Deflater.html
https://doc.owncloud.org/server/8.1/admin_manual/configuration_files/encryption_configuration.html
https://doc.owncloud.org/server/8.1/admin_manual/configuration_files/encryption_configuration.html
https://doc.owncloud.org/server/8.1/developer_manual/core/externalapi.html
https://doc.owncloud.org/server/8.1/developer_manual/core/externalapi.html
https://owncloud.org/features/
https://owncloud.org/features/
https://owncloud.org/
https://owncloud.com/features/
https://spring.io/
http://webdoc.sub.gwdg.de/pub/mon/dariah-de/dwp-2015-11.pdf
http://webdoc.sub.gwdg.de/pub/mon/dariah-de/dwp-2015-11.pdf
http://docs.ractivejs.org/latest/keypaths
http://docs.ractivejs.org/latest/keypaths
http://docs.ractivejs.org/latest/observers
http://docs.ractivejs.org/latest/observers
http://www.ractivejs.org/
https://github.com/hriebl/tgForms/
https://github.com/hriebl/tgForms/
https://dev2.dariah.eu/wiki/download/attachments/14651583/R1.2.2_Usability_Criteria_for_External_Requests_of_Collaboration.pdf
https://dev2.dariah.eu/wiki/download/attachments/14651583/R1.2.2_Usability_Criteria_for_External_Requests_of_Collaboration.pdf
https://dev2.dariah.eu/wiki/download/attachments/14651583/R1.2.2_Usability_Criteria_for_External_Requests_of_Collaboration.pdf

14651583/R1.2.2_Usability_Criteria_for_External_Requests_of_Collaboration.pdf

Schießle, B. (2015). Encryption 2.0 in ownCloud Server 8.1. ownCloud Blog. Blog. Retrieved from

https://owncloud.org/blog/encryption-2-0-in-owncloud-server-8-1/

Schreiber, G., & Raimond, Y. (2014). RDF 1.1 Primer. Retrieved September 7, 2016, from http://www.w3.

org/TR/rdf11-primer/

Seafile. (2016a). Announcing Seafile Drive client, a new way to map Seafile storage as virtual drive.

Retrieved September 26, 2016, from https://blogs.seafile.com/2016/09/02/announcing-seafile-drive-

client-a-new-way-to-map-seafile-storage-as-virtual-drive/

Seafile. (2016b). Components of Seafile Server — Seafile Documentation. Retrieved September 7, 2016,

from https://manual.seafile.com/develop/server-components.html

Seafile. (2016c). Github Repository — Seafile. Retrieved September 7, 2016, from https://github.com/

haiwen/seafile

Seafile. (2016d). Reliable and High Speed File Sync and Share — Seafile Website. Retrieved September

7, 2016, from https://www.seafile.com/en/home/

Seafile. (2016e). Seafile Web API. Retrieved September 7, 2016, from https://manual.seafile.com/develop/

web_api.html

Seafile. (2016f). Seafile-roadmap. Retrieved August 11, 2016, from https://seacloud.cc/group/3/wiki/

seafile-roadmap/

Seafile. (2016g). Security Questions — Seafile Documentation. Retrieved September 7, 2016, from

https://manual.seafile.com/security/security_features.html

Seafile. (2016h). SHA1 encoding of Seafile IDs - Source reference. Retrieved September 7, 2016,

from https://github.com/haiwen/seafile/blob/d14b4f6ce8a9baefc642fd15bc75101f5b973206/common/

fs-mgr.c#L453

Seafile. (2016i). Synchronization algorithm — Seafile Documentation. Retrieved September 25, 2016,

from https://manual.seafile.com/develop/sync_algorithm.html

Seafile-Forum. (2015). How to sync same library with 2 Seafile servers? — Seafile Forum. Retrieved

September 7, 2016, from https://forum.seafile-server.org/t/how-to-sync-same-library-with-2-seafile-

servers/2071

Shibboleth. (2016). Shibboleth Website. Retrieved September 7, 2016, from https://shibboleth.net/

Stiller, J., Thoden, K., Leganovic, O., Heise, C., Höckendorff, M., & Gnadt, T. (2015). Nutzungsverhalten in

den Digital Humanities (R 1.2.1/ M 7.6). Retrieved September 7, 2016, from https://dev2.dariah.eu/wiki/

52

https://dev2.dariah.eu/wiki/download/attachments/14651583/R1.2.2_Usability_Criteria_for_External_Requests_of_Collaboration.pdf
https://dev2.dariah.eu/wiki/download/attachments/14651583/R1.2.2_Usability_Criteria_for_External_Requests_of_Collaboration.pdf
https://dev2.dariah.eu/wiki/download/attachments/14651583/R1.2.2_Usability_Criteria_for_External_Requests_of_Collaboration.pdf
https://owncloud.org/blog/encryption-2-0-in-owncloud-server-8-1/
http://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/rdf11-primer/
https://blogs.seafile.com/2016/09/02/announcing-seafile-drive-client-a-new-way-to-map-seafile-storage-as-virtual-drive/
https://blogs.seafile.com/2016/09/02/announcing-seafile-drive-client-a-new-way-to-map-seafile-storage-as-virtual-drive/
https://manual.seafile.com/develop/server-components.html
https://github.com/haiwen/seafile
https://github.com/haiwen/seafile
https://www.seafile.com/en/home/
https://manual.seafile.com/develop/web_api.html
https://manual.seafile.com/develop/web_api.html
https://seacloud.cc/group/3/wiki/seafile-roadmap/
https://seacloud.cc/group/3/wiki/seafile-roadmap/
https://manual.seafile.com/security/security_features.html
https://github.com/haiwen/seafile/blob/d14b4f6ce8a9baefc642fd15bc75101f5b973206/common/fs-mgr.c#L453
https://github.com/haiwen/seafile/blob/d14b4f6ce8a9baefc642fd15bc75101f5b973206/common/fs-mgr.c#L453
https://manual.seafile.com/develop/sync_algorithm.html
https://forum.seafile-server.org/t/how-to-sync-same-library-with-2-seafile-servers/2071
https://forum.seafile-server.org/t/how-to-sync-same-library-with-2-seafile-servers/2071
https://shibboleth.net/
https://dev2.dariah.eu/wiki/download/attachments/14651583/Report1.2.1-final3.pdf
https://dev2.dariah.eu/wiki/download/attachments/14651583/Report1.2.1-final3.pdf
https://dev2.dariah.eu/wiki/download/attachments/14651583/Report1.2.1-final3.pdf

download/attachments/14651583/Report1.2.1-final3.pdf

Syncplicity Blog. (2009). Spring Website. Retrieved September 12, 2016, from https://web.archive.org/

web/20160304061348/https://www.syncplicity.com/blog/why-delta-sync-doesn-t-matter

Text Encoding Initiative (TEI). (2016). TEI Website. Retrieved September 18, 2016, from http://www.tei-

c.org/

Tridgell, A. (1996). First release of rsync - rcp replacement. Retrieved September 7, 2016, from https:

//groups.google.com/forum/#!msg/comp.os.linux.announce/tZE1qtTcQaU/IF8GhGQ_uTsJ

University of Wuppertal. (2016). Tipps und Hinweise zum Datenschutz. Retrieved September

8, 2016, from http://www.uni-wuppertal.de/de/universitaet/struktur-institutionen/behoerdliche-

datenschutzbeauftragte/tipps-und-hinweise-zum-datenschutz.html

Veentjer, U. (2016a). Git repository for the Seafile DH-publish Connector. Retrieved September 24, 2016,

from https://projects.gwdg.de/projects/seafile-dhpublish-connector/repository

Veentjer, U. (2016b). Test server for the Publikator with Seafile. Retrieved September 26, 2016, from

https://portal.sftest.de.dariah.eu/

Veentjer, U. (2016c). Using the DARIAH-DE Seafile service with the Publikator. Retrieved September 25,

2016, from https://sftest.de.dariah.eu/docs/

Verborgh, R. (2016). Git repository for n3.js. Retrieved September 7, 2016, from https://github.com/

RubenVerborgh/N3.js/

Wikipedia. (2016a). Comparison of file synchronization software — Wikipedia, The Free Encyclopedia.

Retrieved September 7, 2016, from https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_

software

Wikipedia. (2016b). Dropbox (service). Retrieved September 17, 2016, from https://en.wikipedia.org/

wiki/Dropbox_%28service%29

Wikipedia. (2016c). Dropship (software). Retrieved September 17, 2016, from https://en.wikipedia.org/

wiki/Dropship_%28software%29

Zafer, T. (2015). Why Client-Side Encryption Is the Next Best Idea in Cloud-Based Data Security. Informa-

tion Security Today. Retrieved from http://www.infosectoday.com/Articles/Client-Side_Encryption.htm

53

https://dev2.dariah.eu/wiki/download/attachments/14651583/Report1.2.1-final3.pdf
https://dev2.dariah.eu/wiki/download/attachments/14651583/Report1.2.1-final3.pdf
https://dev2.dariah.eu/wiki/download/attachments/14651583/Report1.2.1-final3.pdf
https://web.archive.org/web/20160304061348/https://www.syncplicity.com/blog/why-delta-sync-doesn-t-matter
https://web.archive.org/web/20160304061348/https://www.syncplicity.com/blog/why-delta-sync-doesn-t-matter
http://www.tei-c.org/
http://www.tei-c.org/
https://groups.google.com/forum/#!msg/comp.os.linux.announce/tZE1qtTcQaU/IF8GhGQ_uTsJ
https://groups.google.com/forum/#!msg/comp.os.linux.announce/tZE1qtTcQaU/IF8GhGQ_uTsJ
http://www.uni-wuppertal.de/de/universitaet/struktur-institutionen/behoerdliche-datenschutzbeauftragte/tipps-und-hinweise-zum-datenschutz.html
http://www.uni-wuppertal.de/de/universitaet/struktur-institutionen/behoerdliche-datenschutzbeauftragte/tipps-und-hinweise-zum-datenschutz.html
https://projects.gwdg.de/projects/seafile-dhpublish-connector/repository
https://portal.sftest.de.dariah.eu/
https://sftest.de.dariah.eu/docs/
https://github.com/RubenVerborgh/N3.js/
https://github.com/RubenVerborgh/N3.js/
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Dropbox_%28service%29
https://en.wikipedia.org/wiki/Dropbox_%28service%29
https://en.wikipedia.org/wiki/Dropship_%28software%29
https://en.wikipedia.org/wiki/Dropship_%28software%29
http://www.infosectoday.com/Articles/Client-Side_Encryption.htm

	Introduction
	Use Cases
	Thesis Organization

	Background Information
	DARIAH-DE
	Target Group
	DARIAH AAI
	DARIAH-DE Repository and the Publikator
	Data Model

	File Synchronization
	Technical Background

	Research Data Lifecycle
	Legal Aspects of Cloud Storage Solutions in Research Projects

	Evaluation of Software Solutions for File Synchronization Services
	Requirements
	Tools in the Evaluation
	Dropbox
	ownCloud
	Seafile

	Feature Comparison
	Performance Comparison
	Conclusion

	Application Design
	Extending the Data Model of the Publikator for Seafile Integration
	Creating Unique Identifiers for Data Objects in Seafile
	Additions to the Data Model to Manage a Seafile Collection with the Publikator

	Architecture of Seafile and Seahub

	Implementation
	Authorization Flow
	Seafile API Connection
	Views and Components Needed in Publikator Portlet
	Subcollections
	Seafile Specific Additions for Subcollection Handling

	Automated Metadata Extraction
	Publish to the DARIAH-DE Repository

	Validation of the Implementation
	Use Case 1 - Data Publication of Existing Research Data
	Use Case 2 - Backup, Metadata for Research Data and Metadata Extraction
	Use Case 3 - Collaboration
	Possible Future Work
	Tracking Renaming and Removal of Files and Subfolders
	Seafile Drive Client
	Client Side Encryption

	Conclusion
	Abbreviations
	List of Figures
	Bibliography

