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Abstract II 

Abstract 

This thesis aims to extend an existing Open Educational Resource (OER), which is 

available as a GitHub repository, and provide an organized introduction to basic machine 

learning (ML) concepts and algorithms. Further models, followed by structured metadata 

for each object, will be included while adhering to the contribution guidelines of the OER 

and following the CC license. 

The Machine-Learning-OER-Basics repository intends to provide a wide range of 

benefits by enabling diverse users to apply and distribute machine learning algorithms. 

The goal of this digital collection is to fill the existing gap for instructional material on 

using machine learning in OER as well as make it easier to learn ML concepts effectively. 

These ML models are developed using the programming language Python and the library 

scikit-learn, among other standard libraries. Jupyter Notebook will make it 

straightforward for the user to explore the code. In order to apply the models to various 

practical scenarios, a non-specific data set is selected. 

This work is considered a solution approach in that it includes adding classification 

models. 

A performance comparison of the models is conducted. This comparative analysis 

evaluates the efficiency of each model. The examination includes various metrics for 

measurement. 

This work serves as a written extension, providing comprehensive background 

information on the algorithms utilized within the repositories and the performance 

comparison. 

The OER collection is accessible via GitHub under the CC-BY-4.0 license: 

Machine-Learning-OER-Basics 

Keywords: Machine Learning, Classification, Decision Tree Classifier, Boosting, 

Ensemble models, Random Forest Classifier, Repository, Open Educational Resources 

(OER)

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics
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1 Introduction 

Data-driven analytics are used in the private sector, science and research to gain insights 

into customer behavior, predict disease patterns, or assist in the development of new 

prevention strategies. 

Machine learning (ML) plays a critical role in these methods. Data about humans 

(movement profiles, health data) or from humans (created texts and photos) is generated 

and collected in various areas. ML is omnipresent in helping to process and analyze this 

data. It refers to a collection of techniques capable of automatically identifying patterns 

within data and utilizing these patterns for predicting future data or making decisions in 

uncertain situations. Typically studied within artificial intelligence (AI), ML focuses on 

algorithms and their applications (Marsland, 2014; Murphy, 2012, p. 1). 

Especially in disciplines such as healthcare crisis management or life sciences 

(genomics, genetics), the collection and analysis of this data benefits humans. ML helps 

to determine disease progression in order to be able to characterize various interventions 

(Thiagarajan et al., 2022) or to identify specific locations within a genome sequence to 

develop therapeutic measures. New technologies such as mass spectrometry, flow 

cytometry and high-resolution imaging methods enable the generation of large genomic 

data sets. This big data increases the demand for experts who can apply and optimize 

ML methods to these data sets. Scientists familiar with these applications are becoming 

increasingly crucial to the advancement of genetics and genomics (Libbrecht & Noble, 

2015). 

Labs, biotechnology corporations and research centers are increasingly using the 

potential of ML to detect clinically important patterns (Shah et al., 2019). The main reason 

for using ML in science and research is to use computational power and analytical 

capabilities to discover patterns and insights in complex data sets that would be difficult 

to discover using traditional methods such as manual data processing or empirical 

research. As a result, researchers can make more accurate predictions, make new 

discoveries and accelerate scientific progress in various fields. 

Using state-of-the-art ML algorithms and evaluation metrics is a powerful instrument for 

these institutions to obtain insights from acquired heterogeneous data sets. 

There is a growing demand in these previously mentioned sectors for professionals 

experienced in the application of ML techniques. In order to meet the constantly changing 

market demands, curricula preparing these professionals need to be adapted (Y. Li et 

al., 2019). Scientists should constantly expand their technology stacks to remain 

competitive and a crucial aspect of this is understanding ML methods. This knowledge 

is vital for informed decision-making, as ML is widely used to make predictions and 

facilitate faster decision-making by automating underlying processes. Only by better 

comprehending the potential benefits and limitations of ML can scientists assess the 

reliability and potential biases of these predictions. This may enable them to make more 

informed decisions based on the results as more and more businesses and institutions 

are turning towards data-driven approaches. AI and ML are shaping the future of 
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everyday life, and an understanding of these techniques is essential. This way, 

awareness can be sharpened and a critical approach made possible. 

A closer look at the following example shows the importance of appropriate ML education 

for the healthcare sector. Kolachalama & Garg (2018) describe several factors 

contributing to the lack of accessible ML education for clinicians and biomedical 

researchers and the need for more ML integration in undergraduate and graduate 

medical training programs.  

Medical schools face the challenge of maintaining the curriculum scope and introducing 

new content areas because of the expanding knowledge in biomedicine. For instance, 

in the United States, undergraduate medical education assessments, which heavily 

influence learning, focus primarily on preparing students for licensing exams and have 

recently emphasized competency in entrustable professional activities (EPAs)1, leaving 

AI out of the picture. Improved mentoring and role models from faculty during the 

transition from preclinical to clinical settings would help students use AI effectively in 

medical care. Kolachalama and Garg suggest that ML experts avoid jargon when 

providing technical training and emphasize the direct impact of ML on patients. The 

authors suggest teaching complex concepts in a simplified manner, prioritizing 

conceptual understanding over complex definitions. Doing so can enable individuals to 

approach new data challenges without being hindered by technical terminology. 

Prospective scientists can receive training in ML algorithms and the programming 

language Python from lecturers who offer a variety of courses. A good comprehension 

of coding algorithms and Python libraries can assist scientists in quickly translating their 

data into insights by implementing and testing their scientific concepts (Raschka, 2021). 

Python, currently the most in-demand programming language (Y. Li et al., 2019; A. C. 

Müller & Guido, 2016; Verma et al., 2022), offers open-source libraries for these tasks.  

Its user-friendly syntax, resembling natural English, makes it accessible to beginners and 

is aided by cross-platform compatibility. Python's large user community encourages 

cross-platform code sharing and collaborative development.  

Its versatility extends to statistics, big data processing and ML frameworks like PyTorch 

and TensorFlow. While not as fast as compiled languages like Java or C++, recent 

versions have improved its speed. Despite memory handling differences from C++ or 

Java, Python compensates by facilitating easy entry as a versatile general-purpose 

language (Khoirom et al., 2020; Lindstrom, 2005; Prechelt, 2000). 

Studies show that in job postings for ML (Verma et al., 2022), search demand is highest 

for adept users of the libraries such as scikit-learn (Pedregosa et al., 2011) and Pandas 

(McKinney, 2010). Scikit-learn offers comprehensive coverage of ML methods, 

supported by a strong community (Hao & Ho, 2019).  

 
1 EPAs are units of professional practice, defined as tasks or responsibilities assigned to a trainee for unsupervised 

performance once there is sufficient specific competence to perform (ten Cate, 2013). 
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Due to the complexity and diversity of ML in various fields, it has become increasingly 

more work for lecturers to create an all-encompassing curriculum and for ML enthusiasts 

to find systematically organized and aggregated repositories. 

There is a large selection of courses on Coursera or Udemy, tutorials on Kaggle and 

training material for ML.  

Although there is a wide range of freely available resources for ML methods, it is 

challenging to access compiled and curated resources. There is limited material that 

requires little or no prior knowledge of ML. It is often difficult for beginners to get an 

overview of where to start and what is essential.  

The limitations are complex and include licenses and paywalls for users or are not 

designed for lecturers to provide an overall picture of ML basics. 

From this perspective, additional material is added to a ML collection as Open 

Educational Resources (OER). The novel approach of considering instruction materials 

as objects of a digital collection is further implemented and extended in practice with this 

thesis.  

Because OER are freely available and openly licensed, users can access learning 

materials at no additional cost, making training more accessible. In addition, OER are 

available worldwide, which benefits regions with limited resources. Institutions with 

limited access to research and technology can use OER to bridge this gap and provide 

learning materials to their students.  

OER offer a platform for sharing expertise and collaboratively developing 

interdisciplinary educational resources to create synergies. 

With the constant expansion of, for example, medical knowledge and the need to 

incorporate new content areas such as AI into education, textbooks and course materials 

can quickly become outdated. OER provide a platform for educators to collaboratively 

maintain and share the latest information, ensuring learners have access to the most up-

to-date and relevant resources. 

The digital collection in the form of code, visualizations, and explanations is created in 

accordance with CC licenses. The created materials can thus be redistributed, 

combined, and transformed for any purpose.  

By making the repository publicly available on GitHub, the target audience is extended 

from the group of lecturers to any user interested in ML. This openness is intended to 

encourage the ML community to collaborate and share knowledge, allowing anyone to 

build on this collection and contribute their insights. 
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2 Structure of the thesis 

This work is organized into multiple chapters. Chapter 3 introduces the concept of tree-

based algorithms for classification and describes how various domains apply these 

algorithms. The chapter also underlines the value of OER for teaching and learning ML 

concepts.  

This work provides an overview and background information on the programming 

components - the practical implementation - which are available as repositories on 

GitHub. It serves as an extended transcription and presents contextual information on 

the applied ML models, the methods used and the results of the performance comparison 

for the individual model. Where necessary, content in the repository is referenced. 

Chapter 4 outlines the restructuring and additions made to the existing repository. 

Chapter 5 describes the preparation of the data set for the ML models. It summarizes 

the EDA conducted, which is included in the repository. Chapter 6 explains the 

implementation of the Decision Tree Classifier, Random Forest Classifier and Gradient 

Boosting Classifier in the Machine-Learning-OER-basics collection. It is an elaborated 

version of the repository with additional research-based information. It explains the 

concepts of the underlying parameters for each algorithm. The applied methodologies 

are explained in more scientific detail. The implementation of the code, along with the 

supplementary materials, images and explanatory texts, are described. Next, Chapter 7 

discusses the results of a performance comparison of the three models. A conclusion 

and outlook are given in Chapter 8. 

 

The first practical component, set up as a GitHub repository, is part of the Machine-

Learning-OER-Collection. It aims to develop ML teaching materials as OER and make 

them freely accessible for teaching and learning in various domains. The focus lies on 

the extension of the classification model material within the collection. Tree-based 

models for classification are added after performing an Exploratory Data Analysis (EDA) 

on a selected data set.  

Code based on Python and scikit-learn is made available for algorithms within the OER 

collection. As an interactive computing environment, Jupyter Notebooks, an open-source 

web application, provides a good entry point to navigate the code. 

The explanations on the scikit-learn webpage are sufficient but for beginners, can be 

abstract. The scikit-learn explanations are intended for users already acquainted with 

Python programming. They may require more than basic ML knowledge. To 

contextualize this, a tutorial is set up, which leads step-by-step through the basic ML 

pipeline for individual algorithms. The tutorial presented in this work explains the 

methodology in a simple way so that beginners can follow the explanations well and use 

it as a self-directed project. Studies show that because storytelling is engaging, code 

tutorials are often wrapped in a narrative (Dahlstrom, 2014; Echeverria et al., 2017; 

Granger & Pérez, 2021). In addition, communication skills become essential, as the 

https://github.com/Machine-Learning-OER-Collection
https://github.com/Machine-Learning-OER-Collection
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ability to present results in an understandable way to a broad audience is a critical 

requirement for scientists. 

The intended learning outcome when working with the tutorial is the practical application 

of the algorithms, as well as the understanding of the methods of each model. There are 

descriptions provided to gain basic knowledge. However, the code in this digital 

collection should be understandable without lecture notes. 

In addition, there are notebooks with only a few comments from which the code is 

obtainable. 

The second practical component, a performance comparison of the tree-based models, 

is conducted as a scientific work. The code can be found as a repository on GitHub. 

The implemented algorithms focus on binary classification. Hence, the evaluation 

assesses the classification performance of each algorithm, focusing on how well the 

respective classes are categorized for new, unseen data. The run-time for each model 

is determined and ideas for improvement are given. 

3 State of Research 

For ML, Kevin P. Murphy (2012, p. 3) defined the objective of classification as the 

process of learning a mapping from a set of inputs (𝑥) to corresponding outputs (𝑦). In 

this context, the outputs (𝑦) belong to a specific set of classes, denoted as 𝑦 ∈  {1, … , 𝐶}, 

where 𝐶 represents the number of classes. If only two classes (𝐶 =  2) exist, it is called 

binary classification, with 𝑦 ∈  {0,  1}. For cases where 𝐶 is greater than 2, it is known as 

multiclass classification. 

In ML, classification algorithms are supervised learning algorithms that learn from 

input/output pairs. They are referred to as supervised because they receive guidance by 

providing the desired outputs for each example from which the algorithms are learning 

(A. C. Müller & Guido, 2016, p. 2). The objective is to estimate the function 𝑓, assuming 

𝑦 =  𝑓(𝑥) for an unknown function 𝑓. Predictions, using ŷ = f̂(x), are done on unseen 

inputs but using a labeled training set where the assumption can be compared (Murphy, 

2012, p. 3). 

The created tutorial presents a binary classification task. 

The OER collection currently includes algorithms for linear regression and k-nearest 

neighbor (kNN). This work adds algorithms with tree-based background. 

Classification algorithms based on decision trees (Breiman et al., 1984; Quinlan, 1986, 

1993) are prevalent in the ML community due to the supply of good results, as Patel & 

Prajapati (2018) and Wu et al. (2008) stated.  

For binary classification, tree-based algorithms such as Decision Tree Classifier, 

Random Forest Classifier and Gradient Boosting Classifier are suitable. A decision tree 

https://github.com/auringonnousu/performance_comparison_ML_models
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is a binary tree, while a random forest and gradient booster consist of several decision 

trees. 

Graph theory describes a tree as follows (Bondy & Murty, 2008): The underlying graph 

must be undirected. When a graph is connected and acyclic, it is called a tree. A graph 

is a forest when each component is a tree. A tree is called a rooted tree when one of its 

nodes is called the root. A 2-ary tree is called binary tree. Figure 1 shows the structure 

of a binary tree. A binary tree is either empty (only root node), or its root has a binary 

tree as its left and right subtree (recursiveness). 

Structure of a binary tree: 

 

 

Figure 1 | Structure of a binary tree, with the root, as a parent, the nodes as a child, each node with a descendant is also a parent 

and the leaf nodes are the terminal nodes with their only role as a child. 

 

Given are 𝐺 for graph, 𝑉 for vertex, and 𝐸 for edge. 

The empty tree is a graph 𝐺 =  (𝑉, 𝐸) with an empty vertex set 𝑉 =  {} and an empty 

edge set 𝐸 =  {}. As a concept, it simplifies the recursive definition of binary trees. A 

perfect 𝑘-nary tree of depth ℎ has 𝑘ℎ leaf nodes. Thus, the height h of a perfect 𝑘-nary 

tree with 𝑛 leaves is ℎ = 𝑙𝑜𝑔𝑘𝑛. 

A perfect 𝑘-nary tree of depth ℎ has 

1 + 𝑘 + 𝑘2 + ⋯ +  𝑘ℎ − 1 =
𝑘ℎ − 1

𝑘 –  1
 

(1) 

internal nodes. Hence a binary tree has 2ℎ − 1 internal nodes (Bondy & Murty, 2008, p. 

26). A binary tree contains three kinds of nodes: 

▪ Root node 

• The top node from which all other nodes branch out. 
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▪ Decision node 

• Defined by a threshold value for a particular feature; also called the internal 

node; this node has a child node. 

▪ Leaf node 

• The terminal node, this node does not have any child nodes. It displays the 

value of the target (final decision). 

The concept of recursive partitioning gained momentum in computer science and 

engineering in the 1970s with the emergence of more efficient algorithms for performing 

partition searches. This progress further accelerated the development of these 

techniques (Loh, 2014).  

Quinlan (1986) designed the early tree-based algorithm to address the challenge of 

dealing with numerous features and a large training set, while still aiming to produce a 

relatively effective decision tree without extensive computational requirements.  

The increased accessibility and cost-effectiveness of software have been major 

contributors to the wider adoption and popularity of these techniques in the scientific 

network. The popularity of decision trees and random forests is largely due to their ease 

of use, handling, computability, and the potential for favorable results with little 

computational effort. These methods avoid being black boxes and remain easily 

understood (Loh, 2014). 

However, disciplines such as medical research required a more satisfactory 

classification accuracy, prompting the development of further approaches to optimize the 

results. Ensemble methods combine multiple ML models to create stronger, more 

effective models (Dietterich, 2000; A. C. Müller & Guido, 2016, p. 83). Two ensemble 

methods known for their ability to perform well in classification tasks are random forests 

(Breiman, 2001) and gradient boosting (Friedman, 2001). Both models use decision 

trees as their core component and have proven their effectiveness for various data sets 

(Dev & Eden, 2019; Devika et al., 2019; Qutub et al., 2021; Shaik & Srinivasan, 2019). 

Hence, these three models will be the first to extend the repository. 

The selected algorithms are well-documented2. Sufficient online and offline3 literature is 

available for the users to facilitate learning and debugging (A. C. Müller & Guido, 2016; 

Padillo et al., 2019). 

3.1 Algorithms for Decision Trees 

Scikit-learn uses an optimized version of the Classification and Regression Tree (CART) 

algorithm (Breiman et al., 1984). The earlier version of the decision tree introduced by 

Quinlan (1979) laid the foundation for the CART. The underlying algorithms are Iterative 

 
2 See https://scikit-learn.org/stable/modules/tree.html 

3 See Hands-On Machine Learning with Scikit-Learn 

https://scikit-learn.org/stable/modules/tree.html
https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/


 

 

 

8 8 

Dichotomiser 3 (ID3) and C4.5, presented by Quinlan (1986, 1993). These three are the 

classic decision tree algorithms. 

The ID3 algorithm can handle only nominally scaled variables, requiring prior 

discretization of metric variables. When working directly with metric variables, it is 

necessary to use an algorithm that can handle nominal and metric variables without the 

need for prior discretization, such as C4.5 or CART. 

As the ID3, the C4.5 algorithm also uses the information gain metric. In addition to 

nominal variable processing, Quinlan has made additional enhancements, the most 

important being 

• Continuous and discrete attribute processing: To process continuous 

attributes, C4.5 sets a threshold and then parts the list into those where the 

attribute value is above the threshold and those where the attribute value is less 

than or equal to the threshold. 

• Missing attribute values within training data: C4.5 allows marking attribute 

values as missing. Gain and entropy calculations ignore missing values. 

• Ability to handle attributes with different costs. 

• Pruning: C4.5 goes back from the top after tree creation and tries to remove 

unnecessary branches by replacing them with leaf nodes. 

CART shares many similarities with C4.5 but diverges in its support for numeric target 

variables and omitting a rule set computation. Instead, CART builds binary trees by 

selecting the feature and threshold that yield the highest information gain at each node. 

CART determines the best feature to split on at each node of the tree using the Gini 

impurity metric. The explanation for the Gini impurity metric can be found in Chapter 

6.1.1. 

A relevant feature of the CART algorithm is that it only generates binary trees, which 

means there are always exactly two branches at each node. Thus, the central element 

of this algorithm is finding an optimal binary separation. 

Accordingly, a main difference to C4.5 is that in C4.5, there is no binary splitting. 

However, any number of branches can be incorporated, resulting in a broader tree for 

the same input. It is usually less deep than the corresponding CART tree. In turn, after 

the first classification, subsequent splits are less significant (Quinlan, 1993). 

Both CART and C4.5 also consist of conceptual phase pruning. However, there are some 

differences. The pruning strategy of CART is error-based, meaning CART generates 

some subtrees and tests them with new, previously unclassified data for better results 

(Patel & Prajapati, 2018). C4.5, on the other hand, prunes the tree without considering 

the given database (Maimon & Rokach, 2010). 

The optimized CART version from scikit-learn means there are parameters added to 

improve the performance of the classifier. These parameters are, for instance, 
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class_weight to automatically weight samples by class frequency (Stephens, 2015) and 

the splitting criterion "log_loss" (Lorentzen, 2022), which computes the split at a node. 

3.2 Implementation of Decision Tree Classifier 

Decision Tree algorithms show good classification results in disciplines such as the 

voltage stability of a power system. This classification helps to identify operating 

conditions that are close to or within the region where the system is voltage unstable, 

which can take into account operational requirements in particular (Vanfretti & Arava, 

2020). 

Furthermore, decision tree classification algorithms have significant potential for land 

cover mapping. Friedl & Brodley (1997) showed that decision trees offer certain 

advantages for remote sensing systems due to their simple, unambiguous, and intuitive 

classification structure.  

Decision trees also demonstrate the ability to categorize building damage from 

earthquakes to derive conclusions for prevention strategies (S. Li & Tang, 2020). By 

evaluating 40 data sets with classical ML problems and 31 data sets from the 

bioinformatics domain, Stiglic et al. (2012) show that decision trees perform very well on 

bioinformatics data sets.  

Hwang et al. (2018) report in their paper "Apply Scikit-Learn in Python to Analyze Driver 

Behavior Based on OBD Data" on the use of a decision tree classifier to generate data 

for analyzing driver behavior for different routes. 

These examples show that Decision Tree Classifiers have applications in various 

disciplines and continue to be relevant. 

3.3 Ensemble Methods 

Dietterich (2000) describes an ensemble of classifiers as a set of classifiers combined 

by weighted or unweighted voting to classify unseen examples. In the domain of 

supervised learning, intensive research exists on methods for forming efficient 

ensembles of classifiers. The essential finding is that ensembles often have much higher 

accuracy than their constituent classifiers. A good prerequisite for an ensemble of 

classifiers being more accurate than an individual classifier is if they are diverse and 

precise. Assuming two classifiers as a minimal example, the error rate of both should 

differ. Furthermore, the error rate should be lower for new data. 

For instance, three classifiers {ℎ1, ℎ2, ℎ3} and a new case 𝑥 is considered. Assume that 

the classifiers are not diversified and ℎ1(𝑥) is false, then both ℎ2(𝑥) and ℎ3(𝑥) are false. 

However, if the errors of the classifiers are not correlated when ℎ1(𝑥) is false, then both 

ℎ2(𝑥) and ℎ3(𝑥) can be true. This means that a majority decision classifies 𝑥 correctly. 

The probability that the majority vote is wrong is the area under the binomial distribution 

where more than 𝐿/2 hypotheses are incorrect if the error rates of 𝐿 hypotheses ℎ𝑙  are 

all 𝑝 < 1/2 and the errors are independent. 
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Dietterich goes on to explain why ensemble methods achieve these good results, which 

are reasons for their great relevance. These three reasons are briefly explained based 

on his work: 

a. The first cause is of statistical nature (Dietterich, 2000). A learning algorithm can be 

looked at as a search in a hypothesis space ℋ to identify the best hypothesis in that 

space. The hypothesis space can be described as concepts, i.e., numbers between 

1 and 100, even numbers or odd numbers, and so on (Murphy, 2012, p. 66). 

If the amount of available training data is too small compared to the size of the 

hypothesis space, a statistical problem occurs. If there is not enough data available, 

the learning algorithm can find lots of different hypotheses in ℋ, all leading to the 

same accuracy of the training data. In contrast, with an ensemble method, it is 

possible to average the votes of all these accurate classifiers and reduce the risk of 

choosing the wrong classifier. Figure 2 illustrates the hypothesis space ℋ. The 

outer curve marks the hypothesis space ℋ. The inner curve keeps the set of 

hypotheses, all of which give a good accuracy on the training data. The true 

hypothesis is the point marked as 𝑓. It shows that averaging the accurate 

hypotheses provides a good approximation to 𝑓. 

 

 

Figure 2 | Statistical reason for good ensemble methods according to Dietterich (2000) 

 

b. A second reason is computational (Dietterich, 2000). Many algorithms use a type of 

local search that can cause them to get stuck in local optima. Local optima is a state 

where no minor change of the current best solution will generate a solution that is 

better (Knowles et al., 2001). Now, taken as an example, decision tree algorithms 

that use a greedy splitting rule to expand the tree. Even if sufficient training data 

exists and the statistical problem does not exist, it can still be computationally 

challenging for the algorithm to find the best hypothesis. To better approximate the 

true unknown function, an ensemble, created by performing the local search from 

many different starting points, can be used instead of individual classifiers. Different 

starting points can provide a better approximation of the true unknown function, as 

shown in Figure 3. 
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Figure 3 | Computational reason for good ensemble methods according to Dietterich (2000) 

 

c. The third cause describes how the space of representable functions expands by 

forming weighted sums of hypotheses drawn from ℋ (Dietterich, 2000). This 

representational reason is subtle. The true function 𝑓 cannot be represented by any 

of the hypotheses in ℋ in the majority of ML applications. For most of them, the 

space of all possible classifiers is ℋ. The issue for decision trees is that although it 

is a very flexible algorithm, it will only explore a finite set of hypotheses. For a limited 

training sample, it will stop searching when it finds a hypothesis that fits the training 

data. 

In Figure 4, space ℋ is considered the effective space of hypotheses that the 

learning algorithm searches for a given training data set. 

 

Figure 4 | Representational reason for good ensemble methods according to Dietterich (2000) 

 

For an ensemble of classifiers to be more accurate than its individual members, it is an 

essential and sufficient constraint that the classifiers are not identical yet precise.  

A detailed look at ensembles of decision trees shows that they serve as an ideal model 

framework since the structure is simple and good to interpret. There are several different 

methods in practice, the widely used ones are bagging and boosting. Both are based on 

the assumption that the existing data set or a variation of it is used (Dietterich, 2000). 



 

 

 

12 12 

Bagging 

Bagging stands for bootstrap aggregating. From a statistical point of view, the aim is to 

decorrelate the base learner, here, decision trees, and reduce variance by training 

multiple learners on different training sets (Alpaydin, 2014). 

For a bootstrap sample, a true population 𝑃, a training set 𝑋 of size 𝑁 (data samples) 

and bootstrap (subset) samples 𝐿 are defined. 

For the sampling 𝐿, 𝑁 instances are randomly drawn from 𝑠 of size 𝑁 with replacement. 

This means that some instances may be drawn more than once, while others may not 

be drawn at all but always from the exact same 𝑋. 

When L samples 𝑋𝑗 , 𝑗 = 1, … , 𝐿 are drawn, these entities are similar because they derive 

from the same original sample. However, each sample is slightly different due to random 

variation. These 𝐿 samples 𝑋𝑗 are used to train the 𝑑𝑗, base learners. If minor 

modifications in the training set result in significant differences in the learners produced, 

the learning algorithm will have a large variance and be unstable. Bagging uses 

bootstrapping to generate 𝐿 training sets. It trains 𝐿 learners with an inconsistent learning 

procedure and then averages during testing. 

Averaging reduces the variance only when the positive correlation is small. The stability 

of an algorithm is determined by its ability to produce learners with a significantly high 

positive correlation when applied to resampled versions of the same data set in multiple 

runs. However, algorithms like decision trees are unstable. For large original training 

data sets, it may be preferable to bootstrap into smaller sets of size 𝑁′ <  𝑁. Otherwise, 

the bootstrap replications 𝑋𝑗 will be too similar and 𝑑𝑗 will be highly correlated. 

(Alpaydin, 2014, p. 498). 

The decision boundaries example in Figure 5 shows different trees or base learners of a 

random forest. For simplification, a reduction of the dimensions is applied before. 

Furthermore, the illustration includes just three learners. Bootstrap sampling results in 

each base learner in the random forest being built on a slightly different data set. 

Therefore, the learners all have different decision boundaries. The last plot in the figure 

shows the result when averaging their predicted probabilities. 
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Figure 5 | The decision boundaries identified by learners and the decision boundary acquired by averaging their predicted 

probabilities. 

Boosting 

In comparison, boosting uses a weighted vote, while bagging uses a majority vote. The 

basic principle of boosting is to create complementary base learners by training the next 

learner on the errors of the previous learners. 

The original boosting algorithm by Schapire (1990) combined three base learners to 

produce one strong learner. This boosting algorithm operates recursively, with each 

recursion level employing a learning algorithm that outperforms the level below it. The 

resulting hypothesis can be visualized as a circuit composed of multiple three-input 

majority gates. Freund's (1995) term of a majority gate refers to a logic gate that 

produces an output based on the majority of its inputs. These gates take the labels of 

the base hypotheses as input and produce the final label as output. The depth of the 

circuit depends on the problem parameters, such as accuracy and reliability, and its 

structure may differ between runs. 

In contrast, Freund improved this boosting algorithm by adopting a non-recursive 

approach. The final hypothesis in Freund's approach can be represented using a single 

majority gate. This gate effectively combines the outputs of all the base hypotheses, 

simplifying the representation while still achieving promising results. 

A base learner has an error probability of less than 1/2, which is better than random 

rates in a binary class problem, and a strong learner has an arbitrarily small error 

probability. 

A training set is divided into three random parts 𝑋1, 𝑋2, and 𝑋3. 𝑋1 is used to train 𝑑1. 

Then 𝑋2 is used to train 𝑑1. All misclassified instances of 𝑑1 and as many instances of 

𝑋2 that are correctly classified by 𝑑1 are taken. These together form the training set of 

𝑑2. 

Then 𝑋3 is taken and given to 𝑑1 and 𝑑2. The instances misclassified by 𝑑1 and 𝑑2 form 

the training set of 𝑑3. When testing, 𝑑1 and 𝑑2 are given an instance; if they match, this 
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is the answer. Otherwise, the algorithm considers the output as the answer from 𝑑3, 

leading to a reduction in the error rate. The error rate quantifies the difference between 

the predicted values and the actual target values (Alpaydin, 2014, p. 499). 

3.3.1 Implementation of Random Forest Classifier 

Random forests are an extension of bagging. Random forests result in even more 

randomization in each individual decision tree. In the current version, scikit-learn has 100 

individual decision trees in the Random Forest Classifier by default. If a data frame is 

considered as an example, in contrast to the original bagging, randomized features 

(columns) are also added to the individual samples (rows) in a random forest. 

Breiman (2001) defines a random forest as a classifier consisting of a collection of 

classifiers with a tree structure, where the random vectors are independent, identically 

distributed random vectors. 

The superiority of the random forest model for intrusion detection systems is 

demonstrated by Primartha and Tama (2017) by outperforming an ensemble of a random 

tree and a naive Bayes tree, a naive Bayes and a neural network with regard to the K-

Cross validation method. On the widely used NSL-KDD benchmark data set, the RF-800 

(number of forests) has an accuracy of 99.57%. 

Random forests are commonly used in banking and finance to identify unprofitable 

customers and detect debtors or customer fraud. Trivedi et al. (2020) used the highly 

imbalanced European cardholders data set, showing that the random forest outperforms 

the gradient boosting with an accuracy of 94.00% and a precision of 95.98%. Rajora et 

al. (2018) achieved an accuracy of 94.9% for the same data set and algorithm compared 

to a kNN with an accuracy of 93.2%. 

Random forests are prevalent in the life sciences because their classification models 

have high predictive accuracy. Furthermore, random forests provide information about 

the relevance of variables for classification. 

In omics data, variables or conditional relations between variables are typically crucial 

for a subset of samples of the same class. These data sets tend to have a lot more 

variables than they have samples. This is where random forests show its potential and 

can decipher interactions between variables. For pattern recognition in omics data, RF 

offers two essential aspects: high predictive accuracy and information about the 

importance of variables for classification. This information is critical for data mining and 

feature selection because it helps researchers identify the most important features for 

the classification task. By knowing which features are most important, researchers can 

focus on them when further exploring or simplifying the model while maintaining high 

predictive performance (Touw et al., 2013). 

3.3.2 Implementation of Gradient Boosting Classifier 

Gradient boosting often shows the best results in comparison to other classifiers. 

However, the presented studies also show that the performance depends strongly on 
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the optimization of the parameters. Like the random forest, the gradient is able to deal 

well with imbalanced data sets. Feature selection and parameter optimization should be 

applied. 

The paper by Shobana and Umamaheswari (2021) shows an accuracy of over 90% for 

classifying whether a person is likely to be affected by early-stage liver disease. The 

authors apply a recursive feature elimination technique to the Indian Liver Patient 

Dataset from the UCI Machine Learning Repository. They achieve an accuracy of 91.5% 

with ten features and an accuracy of 94.3% with five features. 

The study of Gao et al. (2022) aimed to predict short-term mortality in patients with 

alcoholic hepatitis using ML algorithms applied to various data sets, including omics and 

clinical data. Within this study, the authors compared four ML models (logistic regression, 

random forest, gradient boosting and support vector machine) by applying them to multi-

omics data in combination with clinical data. Gradient boosting, the best-performing 

model, achieved an Area Under the Curve (AUC) of 0.87 for 30-day mortality prediction 

using the bacterial and metabolic pathways data set and an AUC of 0.87 for 90-day 

mortality prediction using the fungal data set. The results indicate that ML models, 

especially gradient boosting, provide good predictions for short-term mortality in patients 

with alcoholic hepatitis. 

Grinsztajn et al. (2022) examine the performance of deep learning models (e.g., Multi-

Layer-Perceptrons (MLP), FT-Transformer) compared to tree-based models (Gradient 

boosting, XGBoost, and random forests) on tabular data. While the superiority of deep 

learning on tabular data is not well established, it has shown impressive results on text 

and image data. The paper contributes a comprehensive benchmark of deep learning 

methods and tree-based models on 45 tabular data sets.  

The results show that tree-based models outperform deep learning models, especially 

on medium-sized data sets (around 10,000 samples). The authors examine the inductive 

biases of tree-based models and neural networks (NNs) to understand this performance 

gap.  

Neural networks struggle to learn irregular patterns in the target function, and their 

rotational invariance affects their performance, especially when dealing with numerous 

uninformative features in tabular data. Tabular data sets often contain many 

uninformative features, and MLP-like neural networks are less robust to such features 

than tree-based models. The ability of tree-based models to learn piecewise constant 

functions and their lack of rotational invariance make them well-suited for tabular data. 

3.4 Open Educational Resources 

Different perspectives are taken into account, those of the lecturer, users of the content, 

and the learners. By avoiding the theoretical explanations of scikit-learn and focusing on 

simple explanations, the repository will be more accessible to beginners. This approach 

may help users to understand the concepts and implementations more easily. Using a 

real-world data set and presenting a realistic use case in the repository can enhance 
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engagement while working on practical coding tasks (Shouman et al., 2022). This 

approach provides learners with a tangible example. It demonstrates how ML algorithms 

can be applied to solve realistic problems. 

The CC-BY-4.0 license allows others to use, modify, and distribute the content. This 

license ensures that contributors are credited while enabling others to share and alter 

the content.  

The Open Machine Learning Course, created and maintained by Joaquin Vanschoren 

(2017/2023), is an excellent resource for getting deeper into ML. It is available via 

GitHub. However, this course has a different target audience and assumes knowledge 

of ML, linear algebra and statistics. Most of the code is written in functions or uses 

classes, which limits the reusability of code snippets. The code written in this tutorial 

might be too complex for beginners. For getting started with ML, the structure of a 

notebook with less code and more explanation is helpful.  

A Supervised Machine Learning session (Förstner et al., 2021) was developed and 

made available as OER as part of the “Systems Biology - From large data sets to 

biological insight” course. In the accompanying paper, R. Müller et al. (2022) argue that 

molecular biology researchers can benefit from a solid understanding of ML concepts, 

which will enable them to evaluate existing methods critically and develop their ML-based 

workflows to address relevant research questions. The authors emphasize the 

increasing impact and value of ML methods for managing the rapidly growing amount of 

data in molecular biology, especially data generated by high-throughput techniques such 

as second and third-generation sequencing or proteomics. To this end, freely available 

data sets from molecular biology are used in the session. A strong background in 

molecular biology is an advantage when working with the content. However, the content 

is designed to adapt it to other domains quickly. 

The so-called MOOCs limit the free use of the courses to a certain period of time. After 

this period, access to the content is no longer possible. In contrast, the content provided 

in the Machine-Learning-OER-Basics collection is accessible at any time. 

4 Machine-Learning-OER-Basics repository 

The repository, as linked in Appendix A, exists on GitHub and currently contains the two 

algorithms, k-nearest neighbors and linear regression. The structure focuses on 

imparting basic knowledge in the field of ML. For each algorithm explained, a folder with 

a README.md and the respective subfolders code, img and text exist. The scope of this 

thesis includes the addition of the content for the Exploratory Data Analysis (EDA) and 

the algorithms Decision Tree Classifier, Random Forest Classifier, as well as Gradient 

Boosting Classifier. The preexisting repository is restructured in order to form an 

adequate structure for the extension. The restructuring and additions are explained in 

the subsequent sub-chapters. 

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics
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4.1 Restructuring of the collection 

The current structure is reorganized and based on the descriptions of the landscape of 

ML by Rashidi et al. (2019) and Alpaydın (2014). To provide a better overview - as the 

content continues to grow - it is divided into three ML categories: supervised learning, 

unsupervised learning and reinforcement learning. The remainder of this chapter mainly 

describes restructuring the newly created supervised learning folder and the main level. 

On this level, i.e., the main level, the three folders are created and an existing readme.md 

file is extended. The Contents and Requirements sections are added to the readme.md.  

This work adds classification algorithms, categorizing them into supervised learning. 

Within this folder, the folder classification is created. A readme.md and a folder for the 

decision_tree and ensemble_methods are created as subfolders. Each folder contains a 

readme.md, and the three folders code, images and text, respectively, the folders 

random forest and boosting with subfolders follow under ensemble_methods. 

The existing k-nearest neighbors algorithm folder is categorized into the classification 

folder with the corresponding subfiles. The folder regression is created at the same level 

as the classification for the existing linear regression example. 

4.2 Additions for handling the collection 

At the main level, the file license.md, as well as a LICENSES folder are created along 

with .txt files for the corresponding licenses. In addition to the already used license CC-

BY-4.0, the description for the CC0 1.0 Universal (CC0 1.0) Public Domain Dedication is 

added as a LICENSE file. 

The folder images_text contains newly created content. For the newly created objects in 

the folder images, a file of the same name with the suffix .license is generated for each 

object. This also applies to the added data sets as well as the images in the folders of 

the individual classifiers. Each file contains the SPDX identifier and is machine-readable.  

The SPDX identifier is a unique identifier used to represent a specific software package 

or file. It allows the identification and tracking of license information associated with the 

software accurately, ensures compliance, and facilitates open-source software 

management (International Open Standard (ISO/IEC 5962, 2021).  

# SPDX-FileCopyrightText: 2023 Machine-Learning-OER-Collection 

# SPDX-License-Identifier: CC-BY-4.0 

SPDX-FileCopyrightText indicates who owns the copyright to a specific file or software. 

It ensures the copyright owner is adequately identified and helps manage and protect 

their intellectual property rights. The identifier preserves the information even if the file is 

separated from the repository. 

To ensure that the used data sets can be retrieved, they are stored with Git Large File 

Storage (LFS) as a pointer. Git LFS replaces large files with text pointers within Git. 

Meanwhile, it retains the file contents on a remote server. 
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Binder 

It can be a time-consuming task, especially for ML beginners, to install the required 

packages and libraries at the start of a new project. Installing the packages listed in the 

added requirement.txt file is the first step. However, if users want to be sure that all 

dependencies will be up to date in the future and that the notebooks can be used 

independently of the environment, the Binder software provides support. 

With the implementation of Binder into the repository, users can now create dynamic 

computing environments called binders. These environments are built from the Jupyter 

notebooks in the collection. They provide executable and shareable functionality, 

providing an interactive platform for running code, experimenting and collaborating 

without requiring users to install dependencies locally. When creating a Binder 

environment, it is essential to specify the necessary software dependencies and 

configurations to ensure successful code execution. These dependencies are defined in 

configuration files, here requirements.txt file (for pip packages). This file outlines the 

software libraries, versions, and other dependencies necessary for the Binder 

environment to function smoothly. 

5 Data Set 

The selected data set (Thomas, 2018) is a binary classification challenge. The platform 

OpenML (Vanschoren et al., 2014) provides a variety of sets with different licenses. The 

OER requires a data set with a CC license, guaranteeing subsequent usability. 

An EDA, including visualization and correlation of features, is performed to obtain a 

holistic view of the data on which the models are trained. EDA is a valuable tool for 

understanding the data, identifying patterns, and preparing the data set for the ML 

algorithm. 

The EDA is embedded in a story to simplify the information for the user. The code 

provided uses key concepts from the scikit-learn website However, the tutorial is 

intended to be used with little background in ML or the context of a course. Consequently, 

further explanations and visualizations are incorporated. 

The scenario illustrated is a US car dealership. A used car that a dealer buys at auctions 

and sells to customers at a profit may be a so-called lemon. Lemons are vehicles that 

may be damaged beyond repair, may have tampered odometers, or may have been 

defective when they left the factory. In order to avoid high follow-up costs and provide 

the customer with a drivable vehicle, it is important for the car dealer to identify lemons 

and avoid bad purchases. 

The data set contains 72,983 samples and 33 columns, split into 32 independent 

variables and one target column. The total number of missing values is 149,271. The 

data set is imbalanced, resulting in 64,007 observations for class 0 and 8,976 

observations for class 1.  
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The target variable IsBadBuy holds the classes 0 (not a kick) and 1 (kick). The data set 

refers to lemons as kicks, hence this term is used in the course of this work. 

Excerpt of data set including target variable (before preprocessing): 

IsBadBuy Auction VehicleAge Make Model Trim SubModel Color 

0 ADESA 3 MAZDA MAZDA3 i 4D SEDAN I RED 

0 ADESA 5 DODGE 1500 RAM 
PICKUP 2WD 

ST QUAD CAB 4.7L SLT WHITE 

0 ADESA 4 DODGE STRATUS V6 STX 4D SEDAN SXT FFV MAROON 

Table 1 | Excerpt of the kick data set of OpenML. IsBadBuy is the target variable. The vehicles are bought at an auction and will 

be resold to customers. The predictive features are, e.g., the manufacturer (Make) or the vehicle is a base model or has extras 

(Trim). 

A description of the individual features is provided in the notebook. Table 1 shows an 

excerpt of the data frame. 

Preprocessing 

After checking for distinctive values within the columns, individual values are 

standardized. Features holding no valuable information are discarded.  

Filtering for missing values shows that two features have more than 95% of missing 

values; hence these are dropped. For the price features, the missing values are replaced 

by mean value imputation of the respective column.  

A heatmap shows the ratio of missing values per target feature. Missing values have no 

impact on the Decision Tree. The underlying CART algorithm uses a series of surrogate 

splits to handle missing data values at a node. These are splits to alternative variables 

that replace the preferred split when it is not applicable due to missing values (Loh, 

2014). However, as the data set is prepared for various algorithms, missing values are 

replaced by the mean value or substituted by the most frequent value. The remaining 

rows with missing values are dropped without replacement. 

Correlation 

The correlation coefficient for the numerical features is calculated using a correlation 

matrix. The Pearson correlation coefficient shows the linear relationship between two 

variables ranging from - 1 to 1.  

A positive correlation indicates that both attributes are moving in the same direction. 

Consequently, as the value of one variable increases, so does the value of the other.  

A negative sign says the opposite about the correlation. When one value changes, the 

other value changes in the opposite direction; when the value of one variable increases, 

the value of the other decreases.  

A value of zero or close to zero is an indication that there is no relationship, yet it can still 

influence the model. 

The results show a high correlation between price features and features holding the 

same information. To avoid higher computational costs and a decrease in efficiency, 

certain features are removed after calculating the correlation with the target variable.  
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Outlier 

An Outlier is a data point that differs significantly from other observations. An outlier can 

indicate a variance in the data. Within the EDA, the outliers of the numerical features are 

represented with a box plot.  

Figure 6 presents a summary of the statistical values for each feature. The mean and 

median are relatively close to each other per feature, indicating a relatively symmetric 

distribution. The standard deviation for the features CurrentRetailAveragePrice and 

CurrentRetailCleanPrice are higher than the other attributes, indicating greater variability 

in prices. The higher the standard deviation, the greater the variability of the data. 

Figure 6 | Summary table of statistics of the price features before removing the min of $0.00/1.00. Count shows the total amount 

of samples. The standard deviations for the price features are relatively large. This indicates that there is a lot of variability. 

The distribution of the features is shown with bar plots to examine the skewness. The 

outliers of a negative skewness go to the left, whereas they lean to the right for positive 

skewness. A skewed distribution can significantly affect the performance of a model. The 

model can be biased if the distribution is not symmetric. For instance, if the distribution 

is right-skewed, the model could be biased toward the dominant higher values in the data 

set and predict them more often. The generalization for new unseen data could be poor. 

Tree-based models are more robust to skewness because of the way they make the 

decision per data point. In this example, only the outliers below $10 are removed. The 

notebook suggests using the threshold for the high outliers, depending on the use case. 

Distribution of features 

The distribution of the categorical features once again shows the class imbalance. Table 

2 shows the distribution of the top 3 manufacturers for class 0 and class 1: 

Class 0 Class 1 

CHEVROLET 15453 FORD 1730 

DODGE 11527 CHEVROLET 1671 

FORD 9486 DODGE 1328 

Table 2 | Example of the distribution per class 

After cleaning the data set, 23 predictive features with 72,464 data points remain. These 

are written to a .csv file for further use. 
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6 Implementation of Machine Learning Algorithms 

The code for the algorithms is divided into three notebooks. The basis is formed by the 

Decision Tree Classifier notebook, followed by Random Forest and Gradient Boosting 

Classifier notebooks. Gradually, various methods are introduced and explained per 

tutorial. 

This chapter, including subchapters, provides contextual information for the methods 

applied in these tutorials. It is recommended to open the corresponding linked notebooks 

for further information. 

Furthermore, the supplementary learning resources within the repository are briefly 

described. 

The added algorithms are used to process binary classification tasks. For this purpose, 

a set of labeled data (𝑋) is provided to the base learner to classify new unlabeled data 

into class 0 or class 1 after training them. A binary classification task has two target 

variables versus multiple classes. 

Example of a binary classification task (Bartlett et al., 2006):  

Given: 

▪ A set of objects 𝑥 ∈  𝑋, where 𝑋 is a multidimensional feature space.  

• Typically, 𝑥 is a row in a table whose columns are the variables used to 

describe the objects. 

▪ A fixed set of classes: 𝐶 = {𝑐0, 𝑐1} 

The objective, where the class 𝑐(𝑥) is an element of the set 𝐶: 

▪ Determine for each 𝑥 the class 𝑐(𝑥)  ∈  𝐶 

6.1 Decision Tree Classifier 

6.1.1 Application of the algorithm 

The notebook starts with a description of the model and introduces the basic ML pipeline. 

The explanation breaks down each step individually and provides background 

information about the methods used. Data leakage is addressed, as in this tutorial, the 

encoder is applied before the split in training and test data. The preprocessed data set 

has limited data points for certain features. As a result, these features cannot be included 

in the test data set due to insufficient effective splitting. 

The decision tree is trained with the default parameters except for max_depth=4 and 

random_state=42. Each parameter is explained using the scikit-learn documentation as a 

source. A visualization displays a simplified example to give the user a more 

comprehensive understanding of the decision tree. 

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics/blob/main/supervised_learning/classification/decision_tree/code/decision_tree_classifier_tutorial.ipynb
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The decision tree algorithm builds a binary tree by recursively partitioning the input space 

based on feature values. The splitting process starts at the root node (node 0) with all 

data points until meeting specific termination criteria. The decision rules for the 

constructed tree show how the features are used to make decisions about class labels 

(0 or 1). 

The decision tree starts with the root node and then branches into multiple nodes based 

on the feature conditions.  

The structure of each rule is as follows: Feature <= Value: This means that the tree will 

follow the left branch if the value of the given feature is less than or equal to the given 

value, i.e., this condition is True. Conversely, if the value of the specified sample is 

greater than the specified value, the tree will follow the right branch, meaning the 

condition is False. 

Class 0 or Class 1 indicates the class assigned to the data points that satisfy the 

conditions of the specific rule. Figure 7 shows each depth of the progressive tree building 

with a maximum depth of 2. 

  
Figure 7 | Display of a progressive tree construction 

 

As an example, the rules considered: 

▪ If VehicleAge is less than or equal to 4.50, proceed to the following condition. 



 

 

 

23 23 

▪ If CurrentAuctionCleanPrice is less than or equal to 6,312.5, the class label is 0. 

▪ If VehOdo is greater than 58,864.50, the class label is also 0. 

Similar rules apply to the other branches of the decision tree, each leading to a decision 

on whether the class label is 0 or 1 based on a certain combination of feature values. 

For the next step in the notebook, a single node is selected to display the information 

such as Gini Impurity. For illustration, Table 3 shows the information a node contains. 

The splitting criterion selected maximizes the separation between classes. Dividing by 

Feature 1 <= 4.5 results in a True or False decision, which leads to the child nodes (depth 

1). It is tested whether Feature 1 <= 4.5. For a True answer, the data point gets assigned 

to the left node. For a False result, the point gets assigned to the right node.  

The first split separates the two classes with the result True into value = [0.913, 0.087] 

and False into value = [0.82, 0.18]. Each result still contains points belonging to the other 

class. 

Table 3 shows the information a node holds (except the leaf): 

Value Information 

VehicleAge <= 4.5 Test if True or False 

gini = 0.216 Gini Impurity 

samples 48550 All datapoints 

value = [42568, 5982] Amount of samples per class [0,1] 

class = 0 Labeled class 

Table 3 | Example of a node structure. It holds different values based on the feature and the decision of the split  

The first entry VehicleAge shows the feature where the split is done with the condition 

less than or equal to 4.5 years. The Gini Impurity, here 0.216, describes the probability 

that a randomly selected sample of a data set is misclassified. The total number of 

samples is 48,550, and the value indicates the number of samples per class. In this case, 

class 0 has the highest number of samples with 42,568, in contrast to class 1 with 5,982 

samples. The labeled class for this example node is 0. 

Gini Impurity 

The decision tree uses the Gini Impurity as a measure to select the best distribution. Gini 

impurity measures how often an arbitrary entity from the training data set would be 

misclassified if labeled randomly to the distribution of labels in the subset. It reaches its 

minimum (0.0) when all cases in the node fall into a single target category. A decision 

tree follows a greedy strategy. At each step, the most informative feature is selected.  

Bishop (2006, p. 666) describes the Gini Impurity with the equation:  

𝑄τ (𝑇) = ∑ 𝑝 
τ 𝑘

𝐾

𝑘=1

(1 − 𝑝τ 𝑘) 

                                                                                                               (2) 
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Given are 

• node 𝑄τ  for which the Gini impurity 𝑄 is computed 

• 𝑇 represents the decision tree 

• Leaf nodes are defined by 𝜏 =  1, . . . , |𝑇 |, where a leaf node 𝜏 represents a region 

𝑅𝜏 within the input space. A leaf node has no further splits and contains the final 

predicted class or label for the data points falling into that region. 

• For a set of elements having 𝐾 classes and relative frequencies 𝑘 =  1, . , 𝐾; for 

a binary classification problem 𝐾 =  2 (class 0 and class 1) 

• 𝑝τ 𝑘 is defined as the proportion of data points in the region 𝑅𝜏 associated with 

class 𝑘, where 𝑘 =  1, . , 𝐾. It is the ratio of the number of data points of class 𝑘 in 

the region 𝑅𝜏 to the total number of data points in 𝑅𝜏. 

• The probability of randomly selecting an element labeled 𝑘 is 𝑝τ 𝑘; for a binary 

classification problem, 𝑝τ 𝑘  =  0.5 is the maximal when 𝑝τ 𝑘  =  0 and 𝑝τ 𝑘  =  1. 

The next step following in the notebook is training the model. The performance of the 

basic model shows the following results: 

 precision recall f1-score 

Class 0 0.87779 0.99995 0.93490 

Class 1 0.80000 0.00137 0.00273 

Table 4 | Excerpt of the classification report for a Decision Tree Classifier. The recall for class 1 shows that the model is almost 

unable to classify positive entities for this class. class 0 shows better results.  

Table 4 shows the precision, recall and f1-score for each class.  

Alpaydın (2014) defines precision as the accuracy of positive predictions, which indicates 

how many predicted positive instances are correct. It is computed by dividing the number 

of retrieved and relevant records by the total number of retrieved records. If precision 

equals 1, all retrieved records are potentially relevant, but there may still be relevant 

records that are not retrieved.  

Recall is defined as the effectiveness of the model in capturing all actual positive 

instances. It is calculated by dividing the number of retrieved and relevant records by the 

total number of relevant records. Even when the recall equals 1, all relevant records may 

be retrieved, but irrelevant records may also be retrieved (p. 564).  

There is a tradeoff between the precision and recall, meaning by increasing the precision 

the recall will decrease and vice-versa. Finding a balance between precision and recall 

is crucial for unbalanced data sets, because it allows for control of the behavior of the 

model in capturing the minority class, while taking into account the trade-offs with 

precision and false positives. (Ramyachitra & Manikandan, 2014). Here the f1-score is 

useful, which takes both into account. F1-score is defined as the harmonic mean of 

precision and recall: 
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F1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  +  𝑟𝑒𝑐𝑎𝑙𝑙
 

(3) 

Further metrics of the classification report can be found in the notebook. 

The objective is to predict whether the purchase is a Kick. It is to be accepted that a No 

Kick is falsely identified as a Kick. Accordingly, the goal is to minimize the possibility that 

a Kick will be falsely identified as a No Kick. Some false positives may occur, but the 

objective is to avoid false negatives. The focus is on the recall, which should be 

correspondingly high. The results show that the model, with a recall of 0.00137, has 

hardly learned to identify entities for class 1. 

The imbalance is addressed and the majority class is undersampled with the 

RandomUnderSampler from Imblearn. This sampler balances the data set by randomly 

selecting a subset of the data using the default setting replacement=False. This prevents 

the sampler from selecting the same instance multiple times. It ensures that each 

instance selected is unique. Figure 8 illustrates a subset before and after applying the 

under-sample method. For this exemplary representation, the dimensions of the data set 

are reduced using a principal components analysis (PCA). Plot 1 shows the original and 

plot 2 shows the reduced number of data points for class 0. 

 

Figure 8 | Comparison of data before and after applying the RandomUnderSampler. For illustrative purposes, the data set is 

projected into a lower dimensional space using PCA with two components.  
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After retraining the model with the smaller data set, the evaluation shows the following 

results: 

precision recall f1-score 

Class 0 0.93254 0.56842 0.70631 

Class 1 0.18550 0.70506 0.29373 

Table 5 | Excerpt of the classification report for a Decision Tree Classifier after resampling. The precision for class 1 is now only 

0.19 compared to the previous performance of 0.80. This shows a classic tradeoff. By increasing the recall of a classifier, the 

precision is reduced. The f1-score therefore looks at both.  

The results in Table 5 show that by reducing the data points, the model cannot predict 

class 0 so well anymore. However, the recall for class 1 is now 71%. This means that 

the model can make a better prediction for class 1. 

The notebook concludes with a summary and an outlook on further methods. 

6.1.2 Folders text and image 

The decision_tree_classifier.md includes a brief overview of the decision tree structure 

and an example of using if/else questions to build the tree based on those conditions. 

The visualization shows how to partition the tree for each question recursively. At each 

step, as shown in Figure 9, the algorithm splits the data set in a greedy fashion so that 

all data points are partitioned according to the conditions. The initial step partitions the 

input space into two regions depending on how the condition of the root is met. The two 

created subregions can then be subdivided independently. Each subregion is further 

partitioned on how the next condition is met. The recursive subdivision can be 

characterized by traversing a binary tree. Starting from the root node at the top of the 

tree, for each new input x, the region into which it falls is determined. The path continues 

down to a particular leaf node according to the decision criteria at each node.

Figure 9 | Partitioning a Decision Tree | With each question, the data set (input space) is partitioned recursively. This is done in a 

greedy fashion, as the decision tree selects the best possible partition at each step.
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6.2 Random Forest Classifier 

6.2.1 Application of the algorithm 

The notebook begins with a description of the model. It then explains each step of the 

pipeline and provides background information on the methods used. 

For the RandomForestClassifier(), each parameter is explained using the scikit-learn 

documentation as a source.  

The random forest notebook uses the get_dummies() method to encode string objects or 

categorical attributes. The one-hot encoding method is used in the decision tree 

notebook. Both methods create separate binary columns from each feature. The 

get_dummies() method assigns a feature a value of 1 if it corresponds to the value; 

otherwise, it assigns a value of 0. Certain features, such as models or submodels, have 

high cardinality, which means they contain many different values. To keep the number 

of features from getting inflated, the values in the EDA have been cleaned up and unified. 

For instance, Manual and MANUAL would be two new categories if not condensed into 

one value. 

Confusion Matrix 

This notebook introduces the confusion matrix, a visualization tool for evaluating a 

classification model. The output of a confusion matrix is a two-by-two array (Alpaydin, 

2014). The rows correspond to the true class and the columns match the predicted class. 

Each entry counts how often a sample belonging to the class corresponding to the row 

has been classified as the class corresponding to the column. For 𝐾 =  2 classes, using 

a 0/1 error, the class confusion matrix is a K×K matrix where entry (𝑖, 𝑗) represents the 

number of instances belonging to 𝐶𝑖  but assigned to 𝐶𝑗 . Optimally, all off-diagonals 

should be 0. In this case, there would be no misclassification. The class confusion matrix 

determines what misclassifications occur when two classes are confused frequently. 

Two types of errors can be defined for testing a hypothesis.  

When the prediction is also positive, this is a true positive (TP). When the prediction is 

negative for a positive example, this is a false negative (FN). For a negative example, 

when the prediction is also negative, this is a true negative (TN) and a false positive (FP) 

if the prediction of a negative example is positive. There is an error of type I if the 

hypothesis is true but classified as false. It is a type II error if the hypothesis is false but 

classified as true (Alpaydin, 2014, p. 561 f.). Figure 10 shows 20,988 TP, 0 TN, 2,926 

FN (type II error) and 0 FP (type I error). 

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics/blob/main/supervised_learning/classification/ensemble_methods/random_forest/code/random_forest_classifier_tutorial.ipynb
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Figure 10 | The confusion matrix for the Random Forest Classifier shows the true classes and the predicted classes. It shows the 

fraction of the correct and incorrect predicted instances. 

The amount of FN should be low. The goal is to identify all positive samples and avoid 

false negatives.  

The method of sampling shows success in lowering the false negatives. The following 

section describes this process. 

BalancedRandomForestClassifier 

The BalancedRandomForestClassifier is a combination of the concept of ensemble 

learning and the down-sampling majority class method. To represent the classes equally 

in each tree, it artificially modifies the class distribution. 

The Balanced Random Forest (BRF) algorithm works by drawing a bootstrap sample 

from the minority class at each iteration within the random forest. An equal number of 

instances is randomly selected from the majority class with replacement. Then, a 

classification tree is constructed from the data without pruning, which causes the tree to 

grow to the maximum size. This tree construction uses the CART algorithm with a 

specific adjustment: Instead of evaluating all variables for optimal partitioning at each 

node, it searches only a subset of mtry randomly chosen variables. Finally, these two 

steps are repeated as needed. The predictions from each tree in the ensemble are then 

combined to generate the final prediction (Chen et al., 2004). 

After applying the Balanced Random Forest Classifier and training the model again, it 

can predict samples for class 1, leading to a recall of 0.62 as shown in Table 6. 

 

 precision recall f1-score 

Class 0 0.92252 0.62464 0.74491 

Class 1 0.18809 0.62372 0.28902  

Table 6 | Excerpt of the confusion matrix after training the model with the BalancedRandomForestClassifier. In contrast, the recall 

for the basic model is 1.00 for class 0 and 0.00 for class 1. 
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In the first run, however, no examples for class 1 are recognized, but only for class 0. 

Accordingly, the model has yet to learn to classify class 1. By defining the termination 

condition with a depth of 5 and applying the BalancedRandomForestClassifier, the model 

demonstrates that it can predict class 1 entities at this depth. The confusion matrix shows 

for the true predictions 13,110 samples for class 0 and 1,825 samples for class 1. 

The notebook ends with an excursion on bootstrapping. 

6.2.2 Folders text and image 

The file random_forest_classifier.md provides a brief overview of the concept of a 

random forest. It introduces the nature of random forests as a tree-based model. The 

included image visually represents the structure of a Random Forest Classifier. The 

description explains the ensemble characteristics of random forests. 

6.3 Gradient Boosting Classifier 

6.3.1 Application of the algorithm 

The notebook begins by describing boosting and the model. The notebook follows the 

basic pipeline and uses the one-hot encoding technique. It provides context for the 

methods used and explains each step of model training separately. 

The gradient booster is trained using the default parameters except for random_state=42. 

Each parameter is explained by referencing the scikit-learn documentation. By default, 

the model uses 100 trees with a maximum depth of 3 (decision stumps) and a learning 

rate of 0.1, which results in a performance level akin to that of the random forest.  

The key parameters of gradient-boosted tree models are the number of trees and the 

learning rate (A. C. Müller & Guido, 2016, p. 88). The learning rate affects the extent to 

which each individual tree can compensate for the errors of previous trees, while the 

number of trees controls the overall complexity of the model. These two parameters 

interact closely: a lower learning rate requires a larger number of trees to produce a 

comparably complex model.  

A higher learning rate allows the trees to make more corrections, resulting in more 

complex models. As mentioned, expanding the number of trees in the ensemble also 

increases the complexity of the model. This occurs because there are more opportunities 

to compensate for errors in the training data set. 

However, increasing the number of estimators can increase the intricacy of the model, 

potentially leading to overfitting. A good approach is to calibrate the number of trees, 

considering time and memory resources, and then systematically exploring different 

learning rates (A. C. Müller & Guido, 2016, p. 88 f.). 

Gradient boosting creates an additive model using a stepwise forward approach. It 

involves the optimization of various differentiable loss functions. Regression trees are 

trained in each run based on the negative gradient of the selected loss function, here the 

binary log loss (logistic loss). In the case of binary classification, only one regression tree 

is generated. 

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics/blob/main/supervised_learning/classification/ensemble_methods/boosting/code/gradient_boosting_classifier_tutorial.ipynb
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Gradient Boosting is a combination of gradient descent and boosting. In gradient 

boosting, gradients identify the weak points. This is executed by iteratively taking steps 

in the opposite direction of the gradient of the function at the current point, effectively 

moving in the direction of the steepest descent (A. C. Müller & Guido, 2016).  

The objective of the logistic loss (Agostinho & Mendes-Moreira, 2022; Godoy, 2022), 

also referred to as cross-entropy, is to quantify the discrepancy between predicted 

probabilities and true classes. After computing the loss, the weights are updated. The 

objective is to minimize this error. 

Given are 𝑦 ∈  {0, 1} as the label, 𝑝(𝑦) is the predicted probability, it is the weight given 

to each calculated error; 𝑁 denotes the total number of data points, 
1

Ν
 is the probability 

over any given data point being sampled, log is the natural logarithm: 

𝐻𝑝(𝑞) = −
1

Ν
∑ 𝑦𝑖

𝑁

𝑖 

× log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) × log(1 − 𝑝(𝑦𝑖)) 

(4) 

The equation has two components, the positive class (𝑦𝑖) × log(1 − 𝑝(𝑦𝑖)) and negative 

class (1 − 𝑦𝑖) × log(1 − 𝑝(𝑦𝑖)). The loss is computed using the probabilities p of y 

produced by a model, which is the probability for a data point being 1 or 0. 

As mentioned in Chapter 3.3, the boosting method requires a large data set. Therefore, 

the RandomOverSampler is introduced. In the process of random oversampling, an 

element 𝐸 from the minority class is added. Choosing a random set of minority samples 

from 𝑆𝑚𝑖𝑛 expands the original set 𝑆 by replicating and adding to 𝑆 the selected samples. 

In this way, the balance of the class distribution can be adjusted to the required level (He 

& Garcia, 2009). 

The comparison of the performance before and after resampling the data set shows the 

model lacks the ability to predict entities for class 1. As shown in Table 7, the precision 

compared to the resampled data set is much higher for class 1. 

 precision recall f1-score 

Class 0 0.87834 0.99933 0.93494 

Class 1 0.60000 0.00718 0.01418 

Table 7 | Performance of the Gradient Boosting Classifier before applying the RandomOverSampler. The model is not very 

successful in identifying entities for class 1. 

Applying the RandomOverSampler improves the model performance; it has learned to 

identify samples for class 1 in 68% of the cases, as Table 8 displays. However, the 

precision is only at 20%. 
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 precision recall f1-score 

Class 0 0.93302 0.62650 0.74964 

Class 1 0.20181 0.67738 0.31098 

Table 8 | Performance of the Gradient Boosting Classifier after applying the RandomOverSampler. The recall compared to the 

basic model increased from 0.00% to 68%. The model is successful in identifying significantly more entities for class 1. 

The notebook comes to an end with a summary. Additionally, there is a brief discussion 

on which steps could be taken next. 

6.3.2 Folders text and image 

The file gradient_boosting_classifier.md points out the key components of the gradient 

boosting algorithm. The intent is to provide a brief explanation or refresher. 

The figure illustrates the structure of the Gradient Boosting Classifier, showing the 

combination of weak learners and the overall process. 

The text provides a comprehensive overview of the gradient boosting algorithm, its 

components and its characteristics. 

6.4 Text and Images on main level 

The explainer data_set.md gives a brief overview of the concept of handling imbalanced 

data sets. It provides a non-exhaustive list of methods, according to Ramyachitra & 

Manikandan (2014), for treating imbalanced data. The examples include sampling 

techniques on the data level, cost-sensitive learning methods on the algorithmic level, 

and filter-based feature ranking on the feature selection level. The sampling methods 

Undersampling, Oversampling, and BalancedRandomForestClassifier are mentioned 

again since they are used in the tutorials.  

Reducing the total cost of the training data set is the aim of the cost-sensitive learning 

method. The feature selection method involves choosing a subset of input features by 

excluding attributes with little or no predictive information by some measure. 

The text statistical_measure.md provides statistical concepts that relate to data 

distribution analysis and descriptive statistics computation. It primarily focuses on the 

concepts of skewness and the selection of terms within descriptive statistics. The work 

includes a visualization of skewness for the various distribution types, highlighting the 

mode, median and mean values. 

7 Comparison of Performance 

This chapter aims to present the performance comparison results for the classifier 

decision tree, random forest and gradient boosting. For this purpose, different methods, 

including GridSearch, are utilized during the first training to identify the optimal 

parameters for each model. This is followed by determining the most important features 
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per model for the final version of training. After selecting the best features, each model 

is trained with the most important features and the optimal parameter settings. 

The relevant repository, as linked in Appendix B, containing the applied comparison, can 

be found on GitHub.  

The code is iteratively extended and adapted. In the final version, balancing the data set 

by using the RandomOverSampling method replaces the prior version Synthetic Minority 

Over-sampling Technique (SMOTE) method. Chapter 8 gives a brief explanation of why 

this method is discarded.  

The best-performing model is determined. The F1-score, Receiver Operating 

Characteristic (ROC) curve and AUC score are used as performance metrics. 

Furthermore, the run-time of each model is compared. 

As the computational power is limited, adjustments were necessary. Instead of the 

permutation feature importance, the built-in feature importance is used in the final 

version. The permutation feature importance resulted in memory flooding after a couple 

of minutes of run-time.  

The parameter of the GridSearchCV are adjusted manually. Parts of the parameter used 

by Bentéjac et al. (2021) for the random forest and gradient boosting are taken as a 

source. The decision tree uses the work of Vos & Verwer (2021) as a reference. 

However, this is done in a reduced grid due to computational constraints.  

Grid parameter for Decision Tree Classifier: 

            'model__max_depth': [4, 5, 10], 

            'model__min_samples_split': [2, 5, 10], 

            'model__min_samples_leaf': [5], 

            'model__random_state': [42] 

 

The best parameter for the decision tree determined by the grid search are (only those 

that differ from the default parameters): 

'max_depth': 10, ‘min_samples_leaf': 5, 'random_state': 42 

 

Grid parameter for Random Forest Classifier: 

            'model__n_estimators': [100, 200], 

            'model__max_depth': [5, 8, 10], 

            'model__min_samples_split': [2, 5, 10], 

            'model__random_state': [42] 

 

Grid parameter for Gradient Boosting Classifier: 

            'model__n_estimators': [100, 200], 

            'model__max_depth': [3, 5, 7], 

            'model__learning_rate': [0.05, 0.1, 0.3], 

            'model__random_state': [42] 

https://github.com/auringonnousu/performance_comparison_ML_models
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The best parameter for the random forest determined by the grid search are (only those 

that differ from the default parameters): 

'max_depth': 10, 'n_estimators': 200, 'random_state': 42 

The optimal parameter for the gradient boosting, determined through grid search, are 

(only those that differ from the default parameters are listed): 

'learning_rate': 0.3, 'n_estimators': 200, 'max_depth': 7, 'random_state': 42 

A higher learning rate allows the model to make more corrections. For gradient boosting, 

the ability to generalize could deteriorate depending on the number of elements in the 

ensemble, especially at high values for the learning rate (Friedman, 2001). However, this 

effect can be countered or even reversed by utilizing lower learning rates.  

Friedman's (2001) research indicates that the optimal approach to regulating gradient 

boosting effectively is to set the number of models to the maximum computationally 

feasible level and adjust the learning rate. This step would exceed the scope of this work. 

VehBCost and VehOdo rank among the most important features for decision tree and 

random forest. VehBCost ranks as one of the most important features for the gradient 

boosting as displayed in Figure 11. This indicates that these features strongly influence 

the target variable across model types. 

Figure 11 | Top 5 important features for each classifier.

The time-based feature PurchDate and VehicleAge for the decision tree contribute to 

predicting the target variable. Also, VehicleAge has a relatively high importance in the 

GradientBoostingClassifier. For the RandomForestClassifier, the price features have an 
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impact. For the GradientBoostingClassifier, three categorical features play a role. The 

resulting amount of most important features after manually setting a specific threshold 

per model are: 

Amount of features for Decision Tree Classifier: 293 

Amount of features for Random Forest Classifier: 353 

Amount of features for Gradient Boosting Classifier: 61 

The different number of features reflects how each model's underlying algorithm works. 

Decision trees are more likely to overfit, so a larger number of important features 

indicates that the model has adapted to capture noise in the data (A. C. Müller & Guido, 

2016, p. 28). Random forests use a broader set of variables to create a diverse ensemble 

of trees. Gradient boosting, in contrast, tends to prioritize boosting the performance of a 

few key features to minimize errors (A. C. Müller & Guido, 2016, p. 88). 

Figure 12 displays the execution time per model in seconds. The Gradient Boosting 

Classifier took the longest compared to the other models. 

 
Figure 12 | Run-time per model. The run-time per model includes performing GridSearch, cross-validation and training with the 

mentioned grid parameter. 

 

After training each model with the most important features and optimal parameter, the 

following results are obtained: 
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Figure 13 | ROC curve and AUC for the decision tree after training with the best parameter and most important features 

Figure 14 | ROC curve and AUC for the random forest after training with the best parameter and most important features 
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Figure 15 | ROC curve and AUC for the gradient boosting after training with the best parameter and most important features 

 

The ROC curve shows the false positive rate (FPR) versus the true positive rate (TPR). 

An optimal ROC curve near the top left corner represents a classifier that achieves high 

recall with a low false positive rate. The diagonal represents as many true decisions as 

false ones (chance). This means that for a binary classification, a class can be 0 or 1. 

This is not the intended result (Marsland, 2014, p. 24). 

The AUC provides a comprehensive performance measure by condensing the ROC 

curve into a single value (A. C. Müller & Guido, 2016, p. 293). Ideally, a classifier should 

have an AUC of 1.  

The ROC curve in Figures 13, 14 and 15 shows each result per classifier. The gradient 

boosting is closest to the desired result, with a ROC curve closest to the left corner and 

an AUC of 0.9954. 

The number of essential features per model indicates that each model requires only a 

limited number of initial predictive features. Therefore, one potential step would be to 

reduce the data set further before training the models. This would also minimize the 

training duration.  

To avoid overfitting, focusing on the most significant features is useful. A further step 

would be to define the parameter grids as more granular, primarily for the Gradient 

Boosting Classifier.  

For the given use case, the gradient boosting model performs the best. By optimizing 

further as stated, there is potential for an increase in precision and recall for each model 

while maintaining a focus on generalization. 
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8 Conclusion and Outlook 

This work aims to integrate algorithms as OER into the existing repository. The original 

roadmap does not include performing an EDA. The implementation has accordingly 

modified the schedule. The topic of licenses has been more time-consuming. 

Consequently, other components, such as MkDocs, could no longer be implemented.  

The licenses added in this work for the images differ from those already in the repository, 

hence a next step would be to unify them. In addition to adding more algorithms, 

notebooks focusing on different evaluation methods, such as ROC curve AUC, could be 

added to the repository in the future. 

The data set used in the programming contribution deals with vehicles; while this work 

includes examples from medicine and omics, it addresses different audiences. However, 

the kick data set is a good illustration of the unbalanced nature of real-world data. 

While implementing the code, some aspects arose that required adjustments. 

The SMOTE method was first used in combination with the get_dummies() encoding 

method in the Random Forest Classifier and Performance notebooks to balance the data 

set. However, in the course of research for this work, it became apparent that SMOTE is 

not the appropriate method to balance the data set. SMOTE is better suited for data sets 

consisting of numeric attributes. The data set also contains categorical attributes. These 

are transformed into numeric values using the encoding method. Yet, the following 

challenge arises when using the sampling method: SMOTE cannot handle categorical 

variables or their numerically encoded variants. The example illustrates this issue: 

The mean values of the individual features for class 1 should have stayed almost the 

same as a result of resampling by SMOTE since it only adds new samples that are an 

interpolation of two previous members of class 1. For actual numeric variables, this can 

be seen accordingly: 

print(pd.np.mean(X_train[(y_train==1)]['CurrentAuctionAveragePrice'])) 

Mean for CurrentAuctionAveragePrice in original data: 5488.968 

 

print(pd.np.mean(X_train_resampled[(y_train_resampled==1)]['CurrentAuctionAveragePrice'])) 

Mean for CurrentAuctionAveragePrice in resampled data: 5420.338 

 

The average value of the CurrentAuctionAveragePrice attribute has mostly stayed the 

same for class 1. With the 0/1 variables, the situation is different: 

print(pd.np.mean(X_train[(y_train==1)]['VNST_TX'])) 

Mean for VNST_TX in original data: 0.208 
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print(pd.np.mean(X_train_resampled[(y_train_resampled==1)]['VNST_TX'])) 

Mean for VNST_TX in resampled data: 0.085 

 

In the original training set, 20.9% of all class 1 samples came from Texas, in the 

resampled set, only 8.6%. SMOTE cannot handle 0/1 integer variables because 

everything between 0 and 1 that is not 1 is rounded to 0 (because in Python, int(0.9999) 

== 0). Thus, all synthetically generated samples have a strong bias to 0 in their 0/1 

variables. 

SMOTENC can sample both numeric and categorical attributes correctly. Encoding of 

categorical features, however, must be executed after sampling. In the SMOTE-NC 

source code4, OneHotEncoding is implemented, but for the classifiers used, the 

respective attribute must be encoded accordingly after resampling. The alternative would 

have been to integrate the get_dummies encoding method after the sampling method in 

the notebook. Due to time constraints, it is not possible to include these adaptations in 

the random forest notebook and the performance notebook. Therefore, the methods 

BalancedRandomForestClassifier and RandomOverSampler have been implemented.  

 

 

 
4 https://github.com/scikit-learn-contrib/imbalanced-learn/blob/27bb6c7/imblearn/over_sampling/_smote/base.py#L398. 
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Appendix 

Appendix A | Machine Learning OER Collection 

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics 

Appendix B | GitHub Repository for performance comparison 

https://github.com/auringonnousu/performance_comparison_ML_models 

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics
https://github.com/auringonnousu/performance_comparison_ML_models
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