
Extension of an open Machine Learning teaching
resource by classification model material

Bachelor’s thesis to obtain the bachelor’s degree

Bachelor of Science (B.Sc.) in Data and Information Science degree program

The Faculty of Information Science and Communication Studies

at TH Köln - University of Applied Sciences

Submitted by:

Submitted to:

Second reviewer:

Julia Frederike Landsiedel

Prof. Dr. Konrad Förstner

Dr. Klaus Lippert

Cologne, August 28, 2023

Erklärung I

Erklärung

Ich versichere, die von mir vorgelegte Arbeit selbstständig verfasst zu haben. Alle

Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten

Arbeiten anderer oder der Verfasserin/des Verfassers selbst entnommen sind, habe ich

als entnommen kenntlich gemacht. Sämtliche Quellen und Hilfsmittel, die ich für die

Arbeit benutzt habe, sind angegeben. Die Arbeit hat mit gleichem Inhalt bzw. in

wesentlichen Teilen noch keiner anderen Prüfungsbehörde vorgelegen.

Ort, Datum Rechtsverbindliche Unterschrift

Abstract II

Abstract

This thesis aims to extend an existing Open Educational Resource (OER), which is

available as a GitHub repository, and provide an organized introduction to basic machine

learning (ML) concepts and algorithms. Further models, followed by structured metadata

for each object, will be included while adhering to the contribution guidelines of the OER

and following the CC license.

The Machine-Learning-OER-Basics repository intends to provide a wide range of

benefits by enabling diverse users to apply and distribute machine learning algorithms.

The goal of this digital collection is to fill the existing gap for instructional material on

using machine learning in OER as well as make it easier to learn ML concepts effectively.

These ML models are developed using the programming language Python and the library

scikit-learn, among other standard libraries. Jupyter Notebook will make it

straightforward for the user to explore the code. In order to apply the models to various

practical scenarios, a non-specific data set is selected.

This work is considered a solution approach in that it includes adding classification

models.

A performance comparison of the models is conducted. This comparative analysis

evaluates the efficiency of each model. The examination includes various metrics for

measurement.

This work serves as a written extension, providing comprehensive background

information on the algorithms utilized within the repositories and the performance

comparison.

The OER collection is accessible via GitHub under the CC-BY-4.0 license:

Machine-Learning-OER-Basics

Keywords: Machine Learning, Classification, Decision Tree Classifier, Boosting,

Ensemble models, Random Forest Classifier, Repository, Open Educational Resources

(OER)

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics

Table of Contents III

Table of Contents

I

Erklärung .. I

Abstract .. II

Table of Contents .. III

Acronyms.. IV

List of Tables ... V

List of Figures .. VI

1 Introduction ... 1

2 Structure of the thesis .. 4

3 State of Research .. 5

3.1 Algorithms for Decision Trees ... 7

3.2 Implementation of Decision Tree Classifier .. 9

3.3 Ensemble Methods ... 9

3.3.1 Implementation of Random Forest Classifier .. 14

3.3.2 Implementation of Gradient Boosting Classifier .. 14

3.4 Open Educational Resources ... 15

4 Machine-Learning-OER-Basics repository .. 16

4.1 Restructuring of the collection... 17

4.2 Additions for handling the collection ... 17

5 Data Set .. 18

6 Implementation of Machine Learning Algorithms ... 21

6.1 Decision Tree Classifier .. 21

6.1.1 Application of the algorithm ... 21

6.1.2 Folders text and image .. 26

6.2 Random Forest Classifier.. 27

6.2.1 Application of the algorithm ... 27

6.2.2 Folders text and image .. 29

6.3 Gradient Boosting Classifier ... 29

6.3.1 Application of the algorithm ... 29

6.3.2 Folders text and image .. 31

6.4 Text and Images on main level ... 31

7 Comparison of Performance.. 31

8 Conclusion and Outlook... 37

Bibliography .. 39

Appendix .. 48

Acronyms IV

Acronyms

AI | Artificial Intelligence

AUC | Area Under the Curve

CART | Classification and Regression Tree

EDA | Exploratory Data Analysis

ID3 | Iterative Dichotomiser 3

LFS | Large File Storage

ML | Machine Learning

MOOCs | Massive Open Online Courses

MLP | Multi-Layer-Perceptrons

NN | Neural Network

kNN | k-Nearest Neighbor

OER | Open Educational Resources

PCA | Principal component analysis

ROC | Receiver Operating Characteristic curve

SMOTE | Synthetic Minority Over-sampling Technique

SMOTENC | Synthetic Minority Over-sampling Technique Nominal and Continuous

List of Tables V

List of Tables

Table 1 | Excerpt of the kick data set of OpenML. .. 19

Table 2 | Example of the distribution per class ... 20

Table 3 | Example of a node structure. ... 23

Table 4 | Excerpt of the classification report for a Decision Tree Classifier. 24

Table 5 | Excerpt of the classification report for a Decision Tree Classifier after

resampling. ... 26

Table 6 | Excerpt of the confusion matrix after training the model with the

BalancedRandomForestClassifier. .. 28

Table 7 | Performance of the Gradient Boosting Classifier before applying the

RandomOverSampler. ... 30

Table 8 | Performance of the Gradient Boosting Classifier after applying the

RandomOverSampler. ... 31

List of Figures VI

List of Figures

Figure 1 | Structure of a Binary Tree. ...6

Figure 2 | Statistical reason for good ensemble methods. .. 10

Figure 3 | Computational reason for good ensemble methods. 11

Figure 4 | Representational reason for good ensemble methods. 11

Figure 5 | Decision boundaries. ... 13

Figure 6 | Summary table of statistics of the price features. 20

Figure 7 | Display of a progressive tree construction. ... 22

Figure 8 | Comparison of data before and after applying RandomUnderSampler. 25

Figure 9 | Partitioning a Decision Tree. ... 26

Figure 10 | The confusion matrix for the random forest classifier............................... 28

Figure 11 | Run-time per model. .. 34

Figure 12 | Top 5 feature importance for each classifier. ... 33

Figure 13 | ROC curve and AUC for the Decision Tree Classifier. 35

Figure 14 | ROC curve and AUC for the Random Forest Classifier. 35

Figure 15 | ROC curve and AUC for the Gradient Boosting Classifier. 36

1 1

1 Introduction

Data-driven analytics are used in the private sector, science and research to gain insights

into customer behavior, predict disease patterns, or assist in the development of new

prevention strategies.

Machine learning (ML) plays a critical role in these methods. Data about humans

(movement profiles, health data) or from humans (created texts and photos) is generated

and collected in various areas. ML is omnipresent in helping to process and analyze this

data. It refers to a collection of techniques capable of automatically identifying patterns

within data and utilizing these patterns for predicting future data or making decisions in

uncertain situations. Typically studied within artificial intelligence (AI), ML focuses on

algorithms and their applications (Marsland, 2014; Murphy, 2012, p. 1).

Especially in disciplines such as healthcare crisis management or life sciences

(genomics, genetics), the collection and analysis of this data benefits humans. ML helps

to determine disease progression in order to be able to characterize various interventions

(Thiagarajan et al., 2022) or to identify specific locations within a genome sequence to

develop therapeutic measures. New technologies such as mass spectrometry, flow

cytometry and high-resolution imaging methods enable the generation of large genomic

data sets. This big data increases the demand for experts who can apply and optimize

ML methods to these data sets. Scientists familiar with these applications are becoming

increasingly crucial to the advancement of genetics and genomics (Libbrecht & Noble,

2015).

Labs, biotechnology corporations and research centers are increasingly using the

potential of ML to detect clinically important patterns (Shah et al., 2019). The main reason

for using ML in science and research is to use computational power and analytical

capabilities to discover patterns and insights in complex data sets that would be difficult

to discover using traditional methods such as manual data processing or empirical

research. As a result, researchers can make more accurate predictions, make new

discoveries and accelerate scientific progress in various fields.

Using state-of-the-art ML algorithms and evaluation metrics is a powerful instrument for

these institutions to obtain insights from acquired heterogeneous data sets.

There is a growing demand in these previously mentioned sectors for professionals

experienced in the application of ML techniques. In order to meet the constantly changing

market demands, curricula preparing these professionals need to be adapted (Y. Li et

al., 2019). Scientists should constantly expand their technology stacks to remain

competitive and a crucial aspect of this is understanding ML methods. This knowledge

is vital for informed decision-making, as ML is widely used to make predictions and

facilitate faster decision-making by automating underlying processes. Only by better

comprehending the potential benefits and limitations of ML can scientists assess the

reliability and potential biases of these predictions. This may enable them to make more

informed decisions based on the results as more and more businesses and institutions

are turning towards data-driven approaches. AI and ML are shaping the future of

2 2

everyday life, and an understanding of these techniques is essential. This way,

awareness can be sharpened and a critical approach made possible.

A closer look at the following example shows the importance of appropriate ML education

for the healthcare sector. Kolachalama & Garg (2018) describe several factors

contributing to the lack of accessible ML education for clinicians and biomedical

researchers and the need for more ML integration in undergraduate and graduate

medical training programs.

Medical schools face the challenge of maintaining the curriculum scope and introducing

new content areas because of the expanding knowledge in biomedicine. For instance,

in the United States, undergraduate medical education assessments, which heavily

influence learning, focus primarily on preparing students for licensing exams and have

recently emphasized competency in entrustable professional activities (EPAs)1, leaving

AI out of the picture. Improved mentoring and role models from faculty during the

transition from preclinical to clinical settings would help students use AI effectively in

medical care. Kolachalama and Garg suggest that ML experts avoid jargon when

providing technical training and emphasize the direct impact of ML on patients. The

authors suggest teaching complex concepts in a simplified manner, prioritizing

conceptual understanding over complex definitions. Doing so can enable individuals to

approach new data challenges without being hindered by technical terminology.

Prospective scientists can receive training in ML algorithms and the programming

language Python from lecturers who offer a variety of courses. A good comprehension

of coding algorithms and Python libraries can assist scientists in quickly translating their

data into insights by implementing and testing their scientific concepts (Raschka, 2021).

Python, currently the most in-demand programming language (Y. Li et al., 2019; A. C.

Müller & Guido, 2016; Verma et al., 2022), offers open-source libraries for these tasks.

Its user-friendly syntax, resembling natural English, makes it accessible to beginners and

is aided by cross-platform compatibility. Python's large user community encourages

cross-platform code sharing and collaborative development.

Its versatility extends to statistics, big data processing and ML frameworks like PyTorch

and TensorFlow. While not as fast as compiled languages like Java or C++, recent

versions have improved its speed. Despite memory handling differences from C++ or

Java, Python compensates by facilitating easy entry as a versatile general-purpose

language (Khoirom et al., 2020; Lindstrom, 2005; Prechelt, 2000).

Studies show that in job postings for ML (Verma et al., 2022), search demand is highest

for adept users of the libraries such as scikit-learn (Pedregosa et al., 2011) and Pandas

(McKinney, 2010). Scikit-learn offers comprehensive coverage of ML methods,

supported by a strong community (Hao & Ho, 2019).

1 EPAs are units of professional practice, defined as tasks or responsibilities assigned to a trainee for unsupervised

performance once there is sufficient specific competence to perform (ten Cate, 2013).

3 3

Due to the complexity and diversity of ML in various fields, it has become increasingly

more work for lecturers to create an all-encompassing curriculum and for ML enthusiasts

to find systematically organized and aggregated repositories.

There is a large selection of courses on Coursera or Udemy, tutorials on Kaggle and

training material for ML.

Although there is a wide range of freely available resources for ML methods, it is

challenging to access compiled and curated resources. There is limited material that

requires little or no prior knowledge of ML. It is often difficult for beginners to get an

overview of where to start and what is essential.

The limitations are complex and include licenses and paywalls for users or are not

designed for lecturers to provide an overall picture of ML basics.

From this perspective, additional material is added to a ML collection as Open

Educational Resources (OER). The novel approach of considering instruction materials

as objects of a digital collection is further implemented and extended in practice with this

thesis.

Because OER are freely available and openly licensed, users can access learning

materials at no additional cost, making training more accessible. In addition, OER are

available worldwide, which benefits regions with limited resources. Institutions with

limited access to research and technology can use OER to bridge this gap and provide

learning materials to their students.

OER offer a platform for sharing expertise and collaboratively developing

interdisciplinary educational resources to create synergies.

With the constant expansion of, for example, medical knowledge and the need to

incorporate new content areas such as AI into education, textbooks and course materials

can quickly become outdated. OER provide a platform for educators to collaboratively

maintain and share the latest information, ensuring learners have access to the most up-

to-date and relevant resources.

The digital collection in the form of code, visualizations, and explanations is created in

accordance with CC licenses. The created materials can thus be redistributed,

combined, and transformed for any purpose.

By making the repository publicly available on GitHub, the target audience is extended

from the group of lecturers to any user interested in ML. This openness is intended to

encourage the ML community to collaborate and share knowledge, allowing anyone to

build on this collection and contribute their insights.

4 4

2 Structure of the thesis

This work is organized into multiple chapters. Chapter 3 introduces the concept of tree-

based algorithms for classification and describes how various domains apply these

algorithms. The chapter also underlines the value of OER for teaching and learning ML

concepts.

This work provides an overview and background information on the programming

components - the practical implementation - which are available as repositories on

GitHub. It serves as an extended transcription and presents contextual information on

the applied ML models, the methods used and the results of the performance comparison

for the individual model. Where necessary, content in the repository is referenced.

Chapter 4 outlines the restructuring and additions made to the existing repository.

Chapter 5 describes the preparation of the data set for the ML models. It summarizes

the EDA conducted, which is included in the repository. Chapter 6 explains the

implementation of the Decision Tree Classifier, Random Forest Classifier and Gradient

Boosting Classifier in the Machine-Learning-OER-basics collection. It is an elaborated

version of the repository with additional research-based information. It explains the

concepts of the underlying parameters for each algorithm. The applied methodologies

are explained in more scientific detail. The implementation of the code, along with the

supplementary materials, images and explanatory texts, are described. Next, Chapter 7

discusses the results of a performance comparison of the three models. A conclusion

and outlook are given in Chapter 8.

The first practical component, set up as a GitHub repository, is part of the Machine-

Learning-OER-Collection. It aims to develop ML teaching materials as OER and make

them freely accessible for teaching and learning in various domains. The focus lies on

the extension of the classification model material within the collection. Tree-based

models for classification are added after performing an Exploratory Data Analysis (EDA)

on a selected data set.

Code based on Python and scikit-learn is made available for algorithms within the OER

collection. As an interactive computing environment, Jupyter Notebooks, an open-source

web application, provides a good entry point to navigate the code.

The explanations on the scikit-learn webpage are sufficient but for beginners, can be

abstract. The scikit-learn explanations are intended for users already acquainted with

Python programming. They may require more than basic ML knowledge. To

contextualize this, a tutorial is set up, which leads step-by-step through the basic ML

pipeline for individual algorithms. The tutorial presented in this work explains the

methodology in a simple way so that beginners can follow the explanations well and use

it as a self-directed project. Studies show that because storytelling is engaging, code

tutorials are often wrapped in a narrative (Dahlstrom, 2014; Echeverria et al., 2017;

Granger & Pérez, 2021). In addition, communication skills become essential, as the

https://github.com/Machine-Learning-OER-Collection
https://github.com/Machine-Learning-OER-Collection

5 5

ability to present results in an understandable way to a broad audience is a critical

requirement for scientists.

The intended learning outcome when working with the tutorial is the practical application

of the algorithms, as well as the understanding of the methods of each model. There are

descriptions provided to gain basic knowledge. However, the code in this digital

collection should be understandable without lecture notes.

In addition, there are notebooks with only a few comments from which the code is

obtainable.

The second practical component, a performance comparison of the tree-based models,

is conducted as a scientific work. The code can be found as a repository on GitHub.

The implemented algorithms focus on binary classification. Hence, the evaluation

assesses the classification performance of each algorithm, focusing on how well the

respective classes are categorized for new, unseen data. The run-time for each model

is determined and ideas for improvement are given.

3 State of Research

For ML, Kevin P. Murphy (2012, p. 3) defined the objective of classification as the

process of learning a mapping from a set of inputs (𝑥) to corresponding outputs (𝑦). In

this context, the outputs (𝑦) belong to a specific set of classes, denoted as 𝑦 ∈ {1, … , 𝐶},

where 𝐶 represents the number of classes. If only two classes (𝐶 = 2) exist, it is called

binary classification, with 𝑦 ∈ {0, 1}. For cases where 𝐶 is greater than 2, it is known as

multiclass classification.

In ML, classification algorithms are supervised learning algorithms that learn from

input/output pairs. They are referred to as supervised because they receive guidance by

providing the desired outputs for each example from which the algorithms are learning

(A. C. Müller & Guido, 2016, p. 2). The objective is to estimate the function 𝑓, assuming

𝑦 = 𝑓(𝑥) for an unknown function 𝑓. Predictions, using ŷ = f̂(x), are done on unseen

inputs but using a labeled training set where the assumption can be compared (Murphy,

2012, p. 3).

The created tutorial presents a binary classification task.

The OER collection currently includes algorithms for linear regression and k-nearest

neighbor (kNN). This work adds algorithms with tree-based background.

Classification algorithms based on decision trees (Breiman et al., 1984; Quinlan, 1986,

1993) are prevalent in the ML community due to the supply of good results, as Patel &

Prajapati (2018) and Wu et al. (2008) stated.

For binary classification, tree-based algorithms such as Decision Tree Classifier,

Random Forest Classifier and Gradient Boosting Classifier are suitable. A decision tree

https://github.com/auringonnousu/performance_comparison_ML_models

6 6

is a binary tree, while a random forest and gradient booster consist of several decision

trees.

Graph theory describes a tree as follows (Bondy & Murty, 2008): The underlying graph

must be undirected. When a graph is connected and acyclic, it is called a tree. A graph

is a forest when each component is a tree. A tree is called a rooted tree when one of its

nodes is called the root. A 2-ary tree is called binary tree. Figure 1 shows the structure

of a binary tree. A binary tree is either empty (only root node), or its root has a binary

tree as its left and right subtree (recursiveness).

Structure of a binary tree:

Figure 1 | Structure of a binary tree, with the root, as a parent, the nodes as a child, each node with a descendant is also a parent

and the leaf nodes are the terminal nodes with their only role as a child.

Given are 𝐺 for graph, 𝑉 for vertex, and 𝐸 for edge.

The empty tree is a graph 𝐺 = (𝑉, 𝐸) with an empty vertex set 𝑉 = {} and an empty

edge set 𝐸 = {}. As a concept, it simplifies the recursive definition of binary trees. A

perfect 𝑘-nary tree of depth ℎ has 𝑘ℎ leaf nodes. Thus, the height h of a perfect 𝑘-nary

tree with 𝑛 leaves is ℎ = 𝑙𝑜𝑔𝑘𝑛.

A perfect 𝑘-nary tree of depth ℎ has

1 + 𝑘 + 𝑘2 + ⋯ + 𝑘ℎ − 1 =
𝑘ℎ − 1

𝑘 – 1

(1)

internal nodes. Hence a binary tree has 2ℎ − 1 internal nodes (Bondy & Murty, 2008, p.

26). A binary tree contains three kinds of nodes:

▪ Root node

• The top node from which all other nodes branch out.

7 7

▪ Decision node

• Defined by a threshold value for a particular feature; also called the internal

node; this node has a child node.

▪ Leaf node

• The terminal node, this node does not have any child nodes. It displays the

value of the target (final decision).

The concept of recursive partitioning gained momentum in computer science and

engineering in the 1970s with the emergence of more efficient algorithms for performing

partition searches. This progress further accelerated the development of these

techniques (Loh, 2014).

Quinlan (1986) designed the early tree-based algorithm to address the challenge of

dealing with numerous features and a large training set, while still aiming to produce a

relatively effective decision tree without extensive computational requirements.

The increased accessibility and cost-effectiveness of software have been major

contributors to the wider adoption and popularity of these techniques in the scientific

network. The popularity of decision trees and random forests is largely due to their ease

of use, handling, computability, and the potential for favorable results with little

computational effort. These methods avoid being black boxes and remain easily

understood (Loh, 2014).

However, disciplines such as medical research required a more satisfactory

classification accuracy, prompting the development of further approaches to optimize the

results. Ensemble methods combine multiple ML models to create stronger, more

effective models (Dietterich, 2000; A. C. Müller & Guido, 2016, p. 83). Two ensemble

methods known for their ability to perform well in classification tasks are random forests

(Breiman, 2001) and gradient boosting (Friedman, 2001). Both models use decision

trees as their core component and have proven their effectiveness for various data sets

(Dev & Eden, 2019; Devika et al., 2019; Qutub et al., 2021; Shaik & Srinivasan, 2019).

Hence, these three models will be the first to extend the repository.

The selected algorithms are well-documented2. Sufficient online and offline3 literature is

available for the users to facilitate learning and debugging (A. C. Müller & Guido, 2016;

Padillo et al., 2019).

3.1 Algorithms for Decision Trees

Scikit-learn uses an optimized version of the Classification and Regression Tree (CART)

algorithm (Breiman et al., 1984). The earlier version of the decision tree introduced by

Quinlan (1979) laid the foundation for the CART. The underlying algorithms are Iterative

2 See https://scikit-learn.org/stable/modules/tree.html

3 See Hands-On Machine Learning with Scikit-Learn

https://scikit-learn.org/stable/modules/tree.html
https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/

8 8

Dichotomiser 3 (ID3) and C4.5, presented by Quinlan (1986, 1993). These three are the

classic decision tree algorithms.

The ID3 algorithm can handle only nominally scaled variables, requiring prior

discretization of metric variables. When working directly with metric variables, it is

necessary to use an algorithm that can handle nominal and metric variables without the

need for prior discretization, such as C4.5 or CART.

As the ID3, the C4.5 algorithm also uses the information gain metric. In addition to

nominal variable processing, Quinlan has made additional enhancements, the most

important being

• Continuous and discrete attribute processing: To process continuous

attributes, C4.5 sets a threshold and then parts the list into those where the

attribute value is above the threshold and those where the attribute value is less

than or equal to the threshold.

• Missing attribute values within training data: C4.5 allows marking attribute

values as missing. Gain and entropy calculations ignore missing values.

• Ability to handle attributes with different costs.

• Pruning: C4.5 goes back from the top after tree creation and tries to remove

unnecessary branches by replacing them with leaf nodes.

CART shares many similarities with C4.5 but diverges in its support for numeric target

variables and omitting a rule set computation. Instead, CART builds binary trees by

selecting the feature and threshold that yield the highest information gain at each node.

CART determines the best feature to split on at each node of the tree using the Gini

impurity metric. The explanation for the Gini impurity metric can be found in Chapter

6.1.1.

A relevant feature of the CART algorithm is that it only generates binary trees, which

means there are always exactly two branches at each node. Thus, the central element

of this algorithm is finding an optimal binary separation.

Accordingly, a main difference to C4.5 is that in C4.5, there is no binary splitting.

However, any number of branches can be incorporated, resulting in a broader tree for

the same input. It is usually less deep than the corresponding CART tree. In turn, after

the first classification, subsequent splits are less significant (Quinlan, 1993).

Both CART and C4.5 also consist of conceptual phase pruning. However, there are some

differences. The pruning strategy of CART is error-based, meaning CART generates

some subtrees and tests them with new, previously unclassified data for better results

(Patel & Prajapati, 2018). C4.5, on the other hand, prunes the tree without considering

the given database (Maimon & Rokach, 2010).

The optimized CART version from scikit-learn means there are parameters added to

improve the performance of the classifier. These parameters are, for instance,

9 9

class_weight to automatically weight samples by class frequency (Stephens, 2015) and

the splitting criterion "log_loss" (Lorentzen, 2022), which computes the split at a node.

3.2 Implementation of Decision Tree Classifier

Decision Tree algorithms show good classification results in disciplines such as the

voltage stability of a power system. This classification helps to identify operating

conditions that are close to or within the region where the system is voltage unstable,

which can take into account operational requirements in particular (Vanfretti & Arava,

2020).

Furthermore, decision tree classification algorithms have significant potential for land

cover mapping. Friedl & Brodley (1997) showed that decision trees offer certain

advantages for remote sensing systems due to their simple, unambiguous, and intuitive

classification structure.

Decision trees also demonstrate the ability to categorize building damage from

earthquakes to derive conclusions for prevention strategies (S. Li & Tang, 2020). By

evaluating 40 data sets with classical ML problems and 31 data sets from the

bioinformatics domain, Stiglic et al. (2012) show that decision trees perform very well on

bioinformatics data sets.

Hwang et al. (2018) report in their paper "Apply Scikit-Learn in Python to Analyze Driver

Behavior Based on OBD Data" on the use of a decision tree classifier to generate data

for analyzing driver behavior for different routes.

These examples show that Decision Tree Classifiers have applications in various

disciplines and continue to be relevant.

3.3 Ensemble Methods

Dietterich (2000) describes an ensemble of classifiers as a set of classifiers combined

by weighted or unweighted voting to classify unseen examples. In the domain of

supervised learning, intensive research exists on methods for forming efficient

ensembles of classifiers. The essential finding is that ensembles often have much higher

accuracy than their constituent classifiers. A good prerequisite for an ensemble of

classifiers being more accurate than an individual classifier is if they are diverse and

precise. Assuming two classifiers as a minimal example, the error rate of both should

differ. Furthermore, the error rate should be lower for new data.

For instance, three classifiers {ℎ1, ℎ2, ℎ3} and a new case 𝑥 is considered. Assume that

the classifiers are not diversified and ℎ1(𝑥) is false, then both ℎ2(𝑥) and ℎ3(𝑥) are false.

However, if the errors of the classifiers are not correlated when ℎ1(𝑥) is false, then both

ℎ2(𝑥) and ℎ3(𝑥) can be true. This means that a majority decision classifies 𝑥 correctly.

The probability that the majority vote is wrong is the area under the binomial distribution

where more than 𝐿/2 hypotheses are incorrect if the error rates of 𝐿 hypotheses ℎ𝑙 are

all 𝑝 < 1/2 and the errors are independent.

10 10

Dietterich goes on to explain why ensemble methods achieve these good results, which

are reasons for their great relevance. These three reasons are briefly explained based

on his work:

a. The first cause is of statistical nature (Dietterich, 2000). A learning algorithm can be

looked at as a search in a hypothesis space ℋ to identify the best hypothesis in that

space. The hypothesis space can be described as concepts, i.e., numbers between

1 and 100, even numbers or odd numbers, and so on (Murphy, 2012, p. 66).

If the amount of available training data is too small compared to the size of the

hypothesis space, a statistical problem occurs. If there is not enough data available,

the learning algorithm can find lots of different hypotheses in ℋ, all leading to the

same accuracy of the training data. In contrast, with an ensemble method, it is

possible to average the votes of all these accurate classifiers and reduce the risk of

choosing the wrong classifier. Figure 2 illustrates the hypothesis space ℋ. The

outer curve marks the hypothesis space ℋ. The inner curve keeps the set of

hypotheses, all of which give a good accuracy on the training data. The true

hypothesis is the point marked as 𝑓. It shows that averaging the accurate

hypotheses provides a good approximation to 𝑓.

Figure 2 | Statistical reason for good ensemble methods according to Dietterich (2000)

b. A second reason is computational (Dietterich, 2000). Many algorithms use a type of

local search that can cause them to get stuck in local optima. Local optima is a state

where no minor change of the current best solution will generate a solution that is

better (Knowles et al., 2001). Now, taken as an example, decision tree algorithms

that use a greedy splitting rule to expand the tree. Even if sufficient training data

exists and the statistical problem does not exist, it can still be computationally

challenging for the algorithm to find the best hypothesis. To better approximate the

true unknown function, an ensemble, created by performing the local search from

many different starting points, can be used instead of individual classifiers. Different

starting points can provide a better approximation of the true unknown function, as

shown in Figure 3.

11 11

Figure 3 | Computational reason for good ensemble methods according to Dietterich (2000)

c. The third cause describes how the space of representable functions expands by

forming weighted sums of hypotheses drawn from ℋ (Dietterich, 2000). This

representational reason is subtle. The true function 𝑓 cannot be represented by any

of the hypotheses in ℋ in the majority of ML applications. For most of them, the

space of all possible classifiers is ℋ. The issue for decision trees is that although it

is a very flexible algorithm, it will only explore a finite set of hypotheses. For a limited

training sample, it will stop searching when it finds a hypothesis that fits the training

data.

In Figure 4, space ℋ is considered the effective space of hypotheses that the

learning algorithm searches for a given training data set.

Figure 4 | Representational reason for good ensemble methods according to Dietterich (2000)

For an ensemble of classifiers to be more accurate than its individual members, it is an

essential and sufficient constraint that the classifiers are not identical yet precise.

A detailed look at ensembles of decision trees shows that they serve as an ideal model

framework since the structure is simple and good to interpret. There are several different

methods in practice, the widely used ones are bagging and boosting. Both are based on

the assumption that the existing data set or a variation of it is used (Dietterich, 2000).

12 12

Bagging

Bagging stands for bootstrap aggregating. From a statistical point of view, the aim is to

decorrelate the base learner, here, decision trees, and reduce variance by training

multiple learners on different training sets (Alpaydin, 2014).

For a bootstrap sample, a true population 𝑃, a training set 𝑋 of size 𝑁 (data samples)

and bootstrap (subset) samples 𝐿 are defined.

For the sampling 𝐿, 𝑁 instances are randomly drawn from 𝑠 of size 𝑁 with replacement.

This means that some instances may be drawn more than once, while others may not

be drawn at all but always from the exact same 𝑋.

When L samples 𝑋𝑗 , 𝑗 = 1, … , 𝐿 are drawn, these entities are similar because they derive

from the same original sample. However, each sample is slightly different due to random

variation. These 𝐿 samples 𝑋𝑗 are used to train the 𝑑𝑗, base learners. If minor

modifications in the training set result in significant differences in the learners produced,

the learning algorithm will have a large variance and be unstable. Bagging uses

bootstrapping to generate 𝐿 training sets. It trains 𝐿 learners with an inconsistent learning

procedure and then averages during testing.

Averaging reduces the variance only when the positive correlation is small. The stability

of an algorithm is determined by its ability to produce learners with a significantly high

positive correlation when applied to resampled versions of the same data set in multiple

runs. However, algorithms like decision trees are unstable. For large original training

data sets, it may be preferable to bootstrap into smaller sets of size 𝑁′ < 𝑁. Otherwise,

the bootstrap replications 𝑋𝑗 will be too similar and 𝑑𝑗 will be highly correlated.

(Alpaydin, 2014, p. 498).

The decision boundaries example in Figure 5 shows different trees or base learners of a

random forest. For simplification, a reduction of the dimensions is applied before.

Furthermore, the illustration includes just three learners. Bootstrap sampling results in

each base learner in the random forest being built on a slightly different data set.

Therefore, the learners all have different decision boundaries. The last plot in the figure

shows the result when averaging their predicted probabilities.

13 13

Figure 5 | The decision boundaries identified by learners and the decision boundary acquired by averaging their predicted

probabilities.

Boosting

In comparison, boosting uses a weighted vote, while bagging uses a majority vote. The

basic principle of boosting is to create complementary base learners by training the next

learner on the errors of the previous learners.

The original boosting algorithm by Schapire (1990) combined three base learners to

produce one strong learner. This boosting algorithm operates recursively, with each

recursion level employing a learning algorithm that outperforms the level below it. The

resulting hypothesis can be visualized as a circuit composed of multiple three-input

majority gates. Freund's (1995) term of a majority gate refers to a logic gate that

produces an output based on the majority of its inputs. These gates take the labels of

the base hypotheses as input and produce the final label as output. The depth of the

circuit depends on the problem parameters, such as accuracy and reliability, and its

structure may differ between runs.

In contrast, Freund improved this boosting algorithm by adopting a non-recursive

approach. The final hypothesis in Freund's approach can be represented using a single

majority gate. This gate effectively combines the outputs of all the base hypotheses,

simplifying the representation while still achieving promising results.

A base learner has an error probability of less than 1/2, which is better than random

rates in a binary class problem, and a strong learner has an arbitrarily small error

probability.

A training set is divided into three random parts 𝑋1, 𝑋2, and 𝑋3. 𝑋1 is used to train 𝑑1.

Then 𝑋2 is used to train 𝑑1. All misclassified instances of 𝑑1 and as many instances of

𝑋2 that are correctly classified by 𝑑1 are taken. These together form the training set of

𝑑2.

Then 𝑋3 is taken and given to 𝑑1 and 𝑑2. The instances misclassified by 𝑑1 and 𝑑2 form

the training set of 𝑑3. When testing, 𝑑1 and 𝑑2 are given an instance; if they match, this

14 14

is the answer. Otherwise, the algorithm considers the output as the answer from 𝑑3,

leading to a reduction in the error rate. The error rate quantifies the difference between

the predicted values and the actual target values (Alpaydin, 2014, p. 499).

3.3.1 Implementation of Random Forest Classifier

Random forests are an extension of bagging. Random forests result in even more

randomization in each individual decision tree. In the current version, scikit-learn has 100

individual decision trees in the Random Forest Classifier by default. If a data frame is

considered as an example, in contrast to the original bagging, randomized features

(columns) are also added to the individual samples (rows) in a random forest.

Breiman (2001) defines a random forest as a classifier consisting of a collection of

classifiers with a tree structure, where the random vectors are independent, identically

distributed random vectors.

The superiority of the random forest model for intrusion detection systems is

demonstrated by Primartha and Tama (2017) by outperforming an ensemble of a random

tree and a naive Bayes tree, a naive Bayes and a neural network with regard to the K-

Cross validation method. On the widely used NSL-KDD benchmark data set, the RF-800

(number of forests) has an accuracy of 99.57%.

Random forests are commonly used in banking and finance to identify unprofitable

customers and detect debtors or customer fraud. Trivedi et al. (2020) used the highly

imbalanced European cardholders data set, showing that the random forest outperforms

the gradient boosting with an accuracy of 94.00% and a precision of 95.98%. Rajora et

al. (2018) achieved an accuracy of 94.9% for the same data set and algorithm compared

to a kNN with an accuracy of 93.2%.

Random forests are prevalent in the life sciences because their classification models

have high predictive accuracy. Furthermore, random forests provide information about

the relevance of variables for classification.

In omics data, variables or conditional relations between variables are typically crucial

for a subset of samples of the same class. These data sets tend to have a lot more

variables than they have samples. This is where random forests show its potential and

can decipher interactions between variables. For pattern recognition in omics data, RF

offers two essential aspects: high predictive accuracy and information about the

importance of variables for classification. This information is critical for data mining and

feature selection because it helps researchers identify the most important features for

the classification task. By knowing which features are most important, researchers can

focus on them when further exploring or simplifying the model while maintaining high

predictive performance (Touw et al., 2013).

3.3.2 Implementation of Gradient Boosting Classifier

Gradient boosting often shows the best results in comparison to other classifiers.

However, the presented studies also show that the performance depends strongly on

15 15

the optimization of the parameters. Like the random forest, the gradient is able to deal

well with imbalanced data sets. Feature selection and parameter optimization should be

applied.

The paper by Shobana and Umamaheswari (2021) shows an accuracy of over 90% for

classifying whether a person is likely to be affected by early-stage liver disease. The

authors apply a recursive feature elimination technique to the Indian Liver Patient

Dataset from the UCI Machine Learning Repository. They achieve an accuracy of 91.5%

with ten features and an accuracy of 94.3% with five features.

The study of Gao et al. (2022) aimed to predict short-term mortality in patients with

alcoholic hepatitis using ML algorithms applied to various data sets, including omics and

clinical data. Within this study, the authors compared four ML models (logistic regression,

random forest, gradient boosting and support vector machine) by applying them to multi-

omics data in combination with clinical data. Gradient boosting, the best-performing

model, achieved an Area Under the Curve (AUC) of 0.87 for 30-day mortality prediction

using the bacterial and metabolic pathways data set and an AUC of 0.87 for 90-day

mortality prediction using the fungal data set. The results indicate that ML models,

especially gradient boosting, provide good predictions for short-term mortality in patients

with alcoholic hepatitis.

Grinsztajn et al. (2022) examine the performance of deep learning models (e.g., Multi-

Layer-Perceptrons (MLP), FT-Transformer) compared to tree-based models (Gradient

boosting, XGBoost, and random forests) on tabular data. While the superiority of deep

learning on tabular data is not well established, it has shown impressive results on text

and image data. The paper contributes a comprehensive benchmark of deep learning

methods and tree-based models on 45 tabular data sets.

The results show that tree-based models outperform deep learning models, especially

on medium-sized data sets (around 10,000 samples). The authors examine the inductive

biases of tree-based models and neural networks (NNs) to understand this performance

gap.

Neural networks struggle to learn irregular patterns in the target function, and their

rotational invariance affects their performance, especially when dealing with numerous

uninformative features in tabular data. Tabular data sets often contain many

uninformative features, and MLP-like neural networks are less robust to such features

than tree-based models. The ability of tree-based models to learn piecewise constant

functions and their lack of rotational invariance make them well-suited for tabular data.

3.4 Open Educational Resources

Different perspectives are taken into account, those of the lecturer, users of the content,

and the learners. By avoiding the theoretical explanations of scikit-learn and focusing on

simple explanations, the repository will be more accessible to beginners. This approach

may help users to understand the concepts and implementations more easily. Using a

real-world data set and presenting a realistic use case in the repository can enhance

16 16

engagement while working on practical coding tasks (Shouman et al., 2022). This

approach provides learners with a tangible example. It demonstrates how ML algorithms

can be applied to solve realistic problems.

The CC-BY-4.0 license allows others to use, modify, and distribute the content. This

license ensures that contributors are credited while enabling others to share and alter

the content.

The Open Machine Learning Course, created and maintained by Joaquin Vanschoren

(2017/2023), is an excellent resource for getting deeper into ML. It is available via

GitHub. However, this course has a different target audience and assumes knowledge

of ML, linear algebra and statistics. Most of the code is written in functions or uses

classes, which limits the reusability of code snippets. The code written in this tutorial

might be too complex for beginners. For getting started with ML, the structure of a

notebook with less code and more explanation is helpful.

A Supervised Machine Learning session (Förstner et al., 2021) was developed and

made available as OER as part of the “Systems Biology - From large data sets to

biological insight” course. In the accompanying paper, R. Müller et al. (2022) argue that

molecular biology researchers can benefit from a solid understanding of ML concepts,

which will enable them to evaluate existing methods critically and develop their ML-based

workflows to address relevant research questions. The authors emphasize the

increasing impact and value of ML methods for managing the rapidly growing amount of

data in molecular biology, especially data generated by high-throughput techniques such

as second and third-generation sequencing or proteomics. To this end, freely available

data sets from molecular biology are used in the session. A strong background in

molecular biology is an advantage when working with the content. However, the content

is designed to adapt it to other domains quickly.

The so-called MOOCs limit the free use of the courses to a certain period of time. After

this period, access to the content is no longer possible. In contrast, the content provided

in the Machine-Learning-OER-Basics collection is accessible at any time.

4 Machine-Learning-OER-Basics repository

The repository, as linked in Appendix A, exists on GitHub and currently contains the two

algorithms, k-nearest neighbors and linear regression. The structure focuses on

imparting basic knowledge in the field of ML. For each algorithm explained, a folder with

a README.md and the respective subfolders code, img and text exist. The scope of this

thesis includes the addition of the content for the Exploratory Data Analysis (EDA) and

the algorithms Decision Tree Classifier, Random Forest Classifier, as well as Gradient

Boosting Classifier. The preexisting repository is restructured in order to form an

adequate structure for the extension. The restructuring and additions are explained in

the subsequent sub-chapters.

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics

17 17

4.1 Restructuring of the collection

The current structure is reorganized and based on the descriptions of the landscape of

ML by Rashidi et al. (2019) and Alpaydın (2014). To provide a better overview - as the

content continues to grow - it is divided into three ML categories: supervised learning,

unsupervised learning and reinforcement learning. The remainder of this chapter mainly

describes restructuring the newly created supervised learning folder and the main level.

On this level, i.e., the main level, the three folders are created and an existing readme.md

file is extended. The Contents and Requirements sections are added to the readme.md.

This work adds classification algorithms, categorizing them into supervised learning.

Within this folder, the folder classification is created. A readme.md and a folder for the

decision_tree and ensemble_methods are created as subfolders. Each folder contains a

readme.md, and the three folders code, images and text, respectively, the folders

random forest and boosting with subfolders follow under ensemble_methods.

The existing k-nearest neighbors algorithm folder is categorized into the classification

folder with the corresponding subfiles. The folder regression is created at the same level

as the classification for the existing linear regression example.

4.2 Additions for handling the collection

At the main level, the file license.md, as well as a LICENSES folder are created along

with .txt files for the corresponding licenses. In addition to the already used license CC-

BY-4.0, the description for the CC0 1.0 Universal (CC0 1.0) Public Domain Dedication is

added as a LICENSE file.

The folder images_text contains newly created content. For the newly created objects in

the folder images, a file of the same name with the suffix .license is generated for each

object. This also applies to the added data sets as well as the images in the folders of

the individual classifiers. Each file contains the SPDX identifier and is machine-readable.

The SPDX identifier is a unique identifier used to represent a specific software package

or file. It allows the identification and tracking of license information associated with the

software accurately, ensures compliance, and facilitates open-source software

management (International Open Standard (ISO/IEC 5962, 2021).

SPDX-FileCopyrightText: 2023 Machine-Learning-OER-Collection

SPDX-License-Identifier: CC-BY-4.0

SPDX-FileCopyrightText indicates who owns the copyright to a specific file or software.

It ensures the copyright owner is adequately identified and helps manage and protect

their intellectual property rights. The identifier preserves the information even if the file is

separated from the repository.

To ensure that the used data sets can be retrieved, they are stored with Git Large File

Storage (LFS) as a pointer. Git LFS replaces large files with text pointers within Git.

Meanwhile, it retains the file contents on a remote server.

18 18

Binder

It can be a time-consuming task, especially for ML beginners, to install the required

packages and libraries at the start of a new project. Installing the packages listed in the

added requirement.txt file is the first step. However, if users want to be sure that all

dependencies will be up to date in the future and that the notebooks can be used

independently of the environment, the Binder software provides support.

With the implementation of Binder into the repository, users can now create dynamic

computing environments called binders. These environments are built from the Jupyter

notebooks in the collection. They provide executable and shareable functionality,

providing an interactive platform for running code, experimenting and collaborating

without requiring users to install dependencies locally. When creating a Binder

environment, it is essential to specify the necessary software dependencies and

configurations to ensure successful code execution. These dependencies are defined in

configuration files, here requirements.txt file (for pip packages). This file outlines the

software libraries, versions, and other dependencies necessary for the Binder

environment to function smoothly.

5 Data Set

The selected data set (Thomas, 2018) is a binary classification challenge. The platform

OpenML (Vanschoren et al., 2014) provides a variety of sets with different licenses. The

OER requires a data set with a CC license, guaranteeing subsequent usability.

An EDA, including visualization and correlation of features, is performed to obtain a

holistic view of the data on which the models are trained. EDA is a valuable tool for

understanding the data, identifying patterns, and preparing the data set for the ML

algorithm.

The EDA is embedded in a story to simplify the information for the user. The code

provided uses key concepts from the scikit-learn website However, the tutorial is

intended to be used with little background in ML or the context of a course. Consequently,

further explanations and visualizations are incorporated.

The scenario illustrated is a US car dealership. A used car that a dealer buys at auctions

and sells to customers at a profit may be a so-called lemon. Lemons are vehicles that

may be damaged beyond repair, may have tampered odometers, or may have been

defective when they left the factory. In order to avoid high follow-up costs and provide

the customer with a drivable vehicle, it is important for the car dealer to identify lemons

and avoid bad purchases.

The data set contains 72,983 samples and 33 columns, split into 32 independent

variables and one target column. The total number of missing values is 149,271. The

data set is imbalanced, resulting in 64,007 observations for class 0 and 8,976

observations for class 1.

19 19

The target variable IsBadBuy holds the classes 0 (not a kick) and 1 (kick). The data set

refers to lemons as kicks, hence this term is used in the course of this work.

Excerpt of data set including target variable (before preprocessing):

IsBadBuy Auction VehicleAge Make Model Trim SubModel Color

0 ADESA 3 MAZDA MAZDA3 i 4D SEDAN I RED

0 ADESA 5 DODGE 1500 RAM
PICKUP 2WD

ST QUAD CAB 4.7L SLT WHITE

0 ADESA 4 DODGE STRATUS V6 STX 4D SEDAN SXT FFV MAROON

Table 1 | Excerpt of the kick data set of OpenML. IsBadBuy is the target variable. The vehicles are bought at an auction and will

be resold to customers. The predictive features are, e.g., the manufacturer (Make) or the vehicle is a base model or has extras

(Trim).

A description of the individual features is provided in the notebook. Table 1 shows an

excerpt of the data frame.

Preprocessing

After checking for distinctive values within the columns, individual values are

standardized. Features holding no valuable information are discarded.

Filtering for missing values shows that two features have more than 95% of missing

values; hence these are dropped. For the price features, the missing values are replaced

by mean value imputation of the respective column.

A heatmap shows the ratio of missing values per target feature. Missing values have no

impact on the Decision Tree. The underlying CART algorithm uses a series of surrogate

splits to handle missing data values at a node. These are splits to alternative variables

that replace the preferred split when it is not applicable due to missing values (Loh,

2014). However, as the data set is prepared for various algorithms, missing values are

replaced by the mean value or substituted by the most frequent value. The remaining

rows with missing values are dropped without replacement.

Correlation

The correlation coefficient for the numerical features is calculated using a correlation

matrix. The Pearson correlation coefficient shows the linear relationship between two

variables ranging from - 1 to 1.

A positive correlation indicates that both attributes are moving in the same direction.

Consequently, as the value of one variable increases, so does the value of the other.

A negative sign says the opposite about the correlation. When one value changes, the

other value changes in the opposite direction; when the value of one variable increases,

the value of the other decreases.

A value of zero or close to zero is an indication that there is no relationship, yet it can still

influence the model.

The results show a high correlation between price features and features holding the

same information. To avoid higher computational costs and a decrease in efficiency,

certain features are removed after calculating the correlation with the target variable.

20 20

Outlier

An Outlier is a data point that differs significantly from other observations. An outlier can

indicate a variance in the data. Within the EDA, the outliers of the numerical features are

represented with a box plot.

Figure 6 presents a summary of the statistical values for each feature. The mean and

median are relatively close to each other per feature, indicating a relatively symmetric

distribution. The standard deviation for the features CurrentRetailAveragePrice and

CurrentRetailCleanPrice are higher than the other attributes, indicating greater variability

in prices. The higher the standard deviation, the greater the variability of the data.

Figure 6 | Summary table of statistics of the price features before removing the min of $0.00/1.00. Count shows the total amount

of samples. The standard deviations for the price features are relatively large. This indicates that there is a lot of variability.

The distribution of the features is shown with bar plots to examine the skewness. The

outliers of a negative skewness go to the left, whereas they lean to the right for positive

skewness. A skewed distribution can significantly affect the performance of a model. The

model can be biased if the distribution is not symmetric. For instance, if the distribution

is right-skewed, the model could be biased toward the dominant higher values in the data

set and predict them more often. The generalization for new unseen data could be poor.

Tree-based models are more robust to skewness because of the way they make the

decision per data point. In this example, only the outliers below $10 are removed. The

notebook suggests using the threshold for the high outliers, depending on the use case.

Distribution of features

The distribution of the categorical features once again shows the class imbalance. Table

2 shows the distribution of the top 3 manufacturers for class 0 and class 1:

Class 0 Class 1

CHEVROLET 15453 FORD 1730

DODGE 11527 CHEVROLET 1671

FORD 9486 DODGE 1328

Table 2 | Example of the distribution per class

After cleaning the data set, 23 predictive features with 72,464 data points remain. These

are written to a .csv file for further use.

21 21

6 Implementation of Machine Learning Algorithms

The code for the algorithms is divided into three notebooks. The basis is formed by the

Decision Tree Classifier notebook, followed by Random Forest and Gradient Boosting

Classifier notebooks. Gradually, various methods are introduced and explained per

tutorial.

This chapter, including subchapters, provides contextual information for the methods

applied in these tutorials. It is recommended to open the corresponding linked notebooks

for further information.

Furthermore, the supplementary learning resources within the repository are briefly

described.

The added algorithms are used to process binary classification tasks. For this purpose,

a set of labeled data (𝑋) is provided to the base learner to classify new unlabeled data

into class 0 or class 1 after training them. A binary classification task has two target

variables versus multiple classes.

Example of a binary classification task (Bartlett et al., 2006):

Given:

▪ A set of objects 𝑥 ∈ 𝑋, where 𝑋 is a multidimensional feature space.

• Typically, 𝑥 is a row in a table whose columns are the variables used to

describe the objects.

▪ A fixed set of classes: 𝐶 = {𝑐0, 𝑐1}

The objective, where the class 𝑐(𝑥) is an element of the set 𝐶:

▪ Determine for each 𝑥 the class 𝑐(𝑥) ∈ 𝐶

6.1 Decision Tree Classifier

6.1.1 Application of the algorithm

The notebook starts with a description of the model and introduces the basic ML pipeline.

The explanation breaks down each step individually and provides background

information about the methods used. Data leakage is addressed, as in this tutorial, the

encoder is applied before the split in training and test data. The preprocessed data set

has limited data points for certain features. As a result, these features cannot be included

in the test data set due to insufficient effective splitting.

The decision tree is trained with the default parameters except for max_depth=4 and

random_state=42. Each parameter is explained using the scikit-learn documentation as a

source. A visualization displays a simplified example to give the user a more

comprehensive understanding of the decision tree.

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics/blob/main/supervised_learning/classification/decision_tree/code/decision_tree_classifier_tutorial.ipynb

22 22

The decision tree algorithm builds a binary tree by recursively partitioning the input space

based on feature values. The splitting process starts at the root node (node 0) with all

data points until meeting specific termination criteria. The decision rules for the

constructed tree show how the features are used to make decisions about class labels

(0 or 1).

The decision tree starts with the root node and then branches into multiple nodes based

on the feature conditions.

The structure of each rule is as follows: Feature <= Value: This means that the tree will

follow the left branch if the value of the given feature is less than or equal to the given

value, i.e., this condition is True. Conversely, if the value of the specified sample is

greater than the specified value, the tree will follow the right branch, meaning the

condition is False.

Class 0 or Class 1 indicates the class assigned to the data points that satisfy the

conditions of the specific rule. Figure 7 shows each depth of the progressive tree building

with a maximum depth of 2.

Figure 7 | Display of a progressive tree construction

As an example, the rules considered:

▪ If VehicleAge is less than or equal to 4.50, proceed to the following condition.

23 23

▪ If CurrentAuctionCleanPrice is less than or equal to 6,312.5, the class label is 0.

▪ If VehOdo is greater than 58,864.50, the class label is also 0.

Similar rules apply to the other branches of the decision tree, each leading to a decision

on whether the class label is 0 or 1 based on a certain combination of feature values.

For the next step in the notebook, a single node is selected to display the information

such as Gini Impurity. For illustration, Table 3 shows the information a node contains.

The splitting criterion selected maximizes the separation between classes. Dividing by

Feature 1 <= 4.5 results in a True or False decision, which leads to the child nodes (depth

1). It is tested whether Feature 1 <= 4.5. For a True answer, the data point gets assigned

to the left node. For a False result, the point gets assigned to the right node.

The first split separates the two classes with the result True into value = [0.913, 0.087]

and False into value = [0.82, 0.18]. Each result still contains points belonging to the other

class.

Table 3 shows the information a node holds (except the leaf):

Value Information

VehicleAge <= 4.5 Test if True or False

gini = 0.216 Gini Impurity

samples 48550 All datapoints

value = [42568, 5982] Amount of samples per class [0,1]

class = 0 Labeled class

Table 3 | Example of a node structure. It holds different values based on the feature and the decision of the split

The first entry VehicleAge shows the feature where the split is done with the condition

less than or equal to 4.5 years. The Gini Impurity, here 0.216, describes the probability

that a randomly selected sample of a data set is misclassified. The total number of

samples is 48,550, and the value indicates the number of samples per class. In this case,

class 0 has the highest number of samples with 42,568, in contrast to class 1 with 5,982

samples. The labeled class for this example node is 0.

Gini Impurity

The decision tree uses the Gini Impurity as a measure to select the best distribution. Gini

impurity measures how often an arbitrary entity from the training data set would be

misclassified if labeled randomly to the distribution of labels in the subset. It reaches its

minimum (0.0) when all cases in the node fall into a single target category. A decision

tree follows a greedy strategy. At each step, the most informative feature is selected.

Bishop (2006, p. 666) describes the Gini Impurity with the equation:

𝑄τ (𝑇) = ∑ 𝑝
τ 𝑘

𝐾

𝑘=1

(1 − 𝑝τ 𝑘)

 (2)

24 24

Given are

• node 𝑄τ for which the Gini impurity 𝑄 is computed

• 𝑇 represents the decision tree

• Leaf nodes are defined by 𝜏 = 1, . . . , |𝑇 |, where a leaf node 𝜏 represents a region

𝑅𝜏 within the input space. A leaf node has no further splits and contains the final

predicted class or label for the data points falling into that region.

• For a set of elements having 𝐾 classes and relative frequencies 𝑘 = 1, . , 𝐾; for

a binary classification problem 𝐾 = 2 (class 0 and class 1)

• 𝑝τ 𝑘 is defined as the proportion of data points in the region 𝑅𝜏 associated with

class 𝑘, where 𝑘 = 1, . , 𝐾. It is the ratio of the number of data points of class 𝑘 in

the region 𝑅𝜏 to the total number of data points in 𝑅𝜏.

• The probability of randomly selecting an element labeled 𝑘 is 𝑝τ 𝑘; for a binary

classification problem, 𝑝τ 𝑘 = 0.5 is the maximal when 𝑝τ 𝑘 = 0 and 𝑝τ 𝑘 = 1.

The next step following in the notebook is training the model. The performance of the

basic model shows the following results:

 precision recall f1-score

Class 0 0.87779 0.99995 0.93490

Class 1 0.80000 0.00137 0.00273

Table 4 | Excerpt of the classification report for a Decision Tree Classifier. The recall for class 1 shows that the model is almost

unable to classify positive entities for this class. class 0 shows better results.

Table 4 shows the precision, recall and f1-score for each class.

Alpaydın (2014) defines precision as the accuracy of positive predictions, which indicates

how many predicted positive instances are correct. It is computed by dividing the number

of retrieved and relevant records by the total number of retrieved records. If precision

equals 1, all retrieved records are potentially relevant, but there may still be relevant

records that are not retrieved.

Recall is defined as the effectiveness of the model in capturing all actual positive

instances. It is calculated by dividing the number of retrieved and relevant records by the

total number of relevant records. Even when the recall equals 1, all relevant records may

be retrieved, but irrelevant records may also be retrieved (p. 564).

There is a tradeoff between the precision and recall, meaning by increasing the precision

the recall will decrease and vice-versa. Finding a balance between precision and recall

is crucial for unbalanced data sets, because it allows for control of the behavior of the

model in capturing the minority class, while taking into account the trade-offs with

precision and false positives. (Ramyachitra & Manikandan, 2014). Here the f1-score is

useful, which takes both into account. F1-score is defined as the harmonic mean of

precision and recall:

25 25

F1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  +  𝑟𝑒𝑐𝑎𝑙𝑙

(3)

Further metrics of the classification report can be found in the notebook.

The objective is to predict whether the purchase is a Kick. It is to be accepted that a No

Kick is falsely identified as a Kick. Accordingly, the goal is to minimize the possibility that

a Kick will be falsely identified as a No Kick. Some false positives may occur, but the

objective is to avoid false negatives. The focus is on the recall, which should be

correspondingly high. The results show that the model, with a recall of 0.00137, has

hardly learned to identify entities for class 1.

The imbalance is addressed and the majority class is undersampled with the

RandomUnderSampler from Imblearn. This sampler balances the data set by randomly

selecting a subset of the data using the default setting replacement=False. This prevents

the sampler from selecting the same instance multiple times. It ensures that each

instance selected is unique. Figure 8 illustrates a subset before and after applying the

under-sample method. For this exemplary representation, the dimensions of the data set

are reduced using a principal components analysis (PCA). Plot 1 shows the original and

plot 2 shows the reduced number of data points for class 0.

Figure 8 | Comparison of data before and after applying the RandomUnderSampler. For illustrative purposes, the data set is

projected into a lower dimensional space using PCA with two components.

26 26

After retraining the model with the smaller data set, the evaluation shows the following

results:

precision recall f1-score

Class 0 0.93254 0.56842 0.70631

Class 1 0.18550 0.70506 0.29373

Table 5 | Excerpt of the classification report for a Decision Tree Classifier after resampling. The precision for class 1 is now only

0.19 compared to the previous performance of 0.80. This shows a classic tradeoff. By increasing the recall of a classifier, the

precision is reduced. The f1-score therefore looks at both.

The results in Table 5 show that by reducing the data points, the model cannot predict

class 0 so well anymore. However, the recall for class 1 is now 71%. This means that

the model can make a better prediction for class 1.

The notebook concludes with a summary and an outlook on further methods.

6.1.2 Folders text and image

The decision_tree_classifier.md includes a brief overview of the decision tree structure

and an example of using if/else questions to build the tree based on those conditions.

The visualization shows how to partition the tree for each question recursively. At each

step, as shown in Figure 9, the algorithm splits the data set in a greedy fashion so that

all data points are partitioned according to the conditions. The initial step partitions the

input space into two regions depending on how the condition of the root is met. The two

created subregions can then be subdivided independently. Each subregion is further

partitioned on how the next condition is met. The recursive subdivision can be

characterized by traversing a binary tree. Starting from the root node at the top of the

tree, for each new input x, the region into which it falls is determined. The path continues

down to a particular leaf node according to the decision criteria at each node.

Figure 9 | Partitioning a Decision Tree | With each question, the data set (input space) is partitioned recursively. This is done in a

greedy fashion, as the decision tree selects the best possible partition at each step.

27 27

6.2 Random Forest Classifier

6.2.1 Application of the algorithm

The notebook begins with a description of the model. It then explains each step of the

pipeline and provides background information on the methods used.

For the RandomForestClassifier(), each parameter is explained using the scikit-learn

documentation as a source.

The random forest notebook uses the get_dummies() method to encode string objects or

categorical attributes. The one-hot encoding method is used in the decision tree

notebook. Both methods create separate binary columns from each feature. The

get_dummies() method assigns a feature a value of 1 if it corresponds to the value;

otherwise, it assigns a value of 0. Certain features, such as models or submodels, have

high cardinality, which means they contain many different values. To keep the number

of features from getting inflated, the values in the EDA have been cleaned up and unified.

For instance, Manual and MANUAL would be two new categories if not condensed into

one value.

Confusion Matrix

This notebook introduces the confusion matrix, a visualization tool for evaluating a

classification model. The output of a confusion matrix is a two-by-two array (Alpaydin,

2014). The rows correspond to the true class and the columns match the predicted class.

Each entry counts how often a sample belonging to the class corresponding to the row

has been classified as the class corresponding to the column. For 𝐾 = 2 classes, using

a 0/1 error, the class confusion matrix is a K×K matrix where entry (𝑖, 𝑗) represents the

number of instances belonging to 𝐶𝑖 but assigned to 𝐶𝑗 . Optimally, all off-diagonals

should be 0. In this case, there would be no misclassification. The class confusion matrix

determines what misclassifications occur when two classes are confused frequently.

Two types of errors can be defined for testing a hypothesis.

When the prediction is also positive, this is a true positive (TP). When the prediction is

negative for a positive example, this is a false negative (FN). For a negative example,

when the prediction is also negative, this is a true negative (TN) and a false positive (FP)

if the prediction of a negative example is positive. There is an error of type I if the

hypothesis is true but classified as false. It is a type II error if the hypothesis is false but

classified as true (Alpaydin, 2014, p. 561 f.). Figure 10 shows 20,988 TP, 0 TN, 2,926

FN (type II error) and 0 FP (type I error).

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics/blob/main/supervised_learning/classification/ensemble_methods/random_forest/code/random_forest_classifier_tutorial.ipynb

28 28

Figure 10 | The confusion matrix for the Random Forest Classifier shows the true classes and the predicted classes. It shows the

fraction of the correct and incorrect predicted instances.

The amount of FN should be low. The goal is to identify all positive samples and avoid

false negatives.

The method of sampling shows success in lowering the false negatives. The following

section describes this process.

BalancedRandomForestClassifier

The BalancedRandomForestClassifier is a combination of the concept of ensemble

learning and the down-sampling majority class method. To represent the classes equally

in each tree, it artificially modifies the class distribution.

The Balanced Random Forest (BRF) algorithm works by drawing a bootstrap sample

from the minority class at each iteration within the random forest. An equal number of

instances is randomly selected from the majority class with replacement. Then, a

classification tree is constructed from the data without pruning, which causes the tree to

grow to the maximum size. This tree construction uses the CART algorithm with a

specific adjustment: Instead of evaluating all variables for optimal partitioning at each

node, it searches only a subset of mtry randomly chosen variables. Finally, these two

steps are repeated as needed. The predictions from each tree in the ensemble are then

combined to generate the final prediction (Chen et al., 2004).

After applying the Balanced Random Forest Classifier and training the model again, it

can predict samples for class 1, leading to a recall of 0.62 as shown in Table 6.

 precision recall f1-score

Class 0 0.92252 0.62464 0.74491

Class 1 0.18809 0.62372 0.28902

Table 6 | Excerpt of the confusion matrix after training the model with the BalancedRandomForestClassifier. In contrast, the recall

for the basic model is 1.00 for class 0 and 0.00 for class 1.

29 29

In the first run, however, no examples for class 1 are recognized, but only for class 0.

Accordingly, the model has yet to learn to classify class 1. By defining the termination

condition with a depth of 5 and applying the BalancedRandomForestClassifier, the model

demonstrates that it can predict class 1 entities at this depth. The confusion matrix shows

for the true predictions 13,110 samples for class 0 and 1,825 samples for class 1.

The notebook ends with an excursion on bootstrapping.

6.2.2 Folders text and image

The file random_forest_classifier.md provides a brief overview of the concept of a

random forest. It introduces the nature of random forests as a tree-based model. The

included image visually represents the structure of a Random Forest Classifier. The

description explains the ensemble characteristics of random forests.

6.3 Gradient Boosting Classifier

6.3.1 Application of the algorithm

The notebook begins by describing boosting and the model. The notebook follows the

basic pipeline and uses the one-hot encoding technique. It provides context for the

methods used and explains each step of model training separately.

The gradient booster is trained using the default parameters except for random_state=42.

Each parameter is explained by referencing the scikit-learn documentation. By default,

the model uses 100 trees with a maximum depth of 3 (decision stumps) and a learning

rate of 0.1, which results in a performance level akin to that of the random forest.

The key parameters of gradient-boosted tree models are the number of trees and the

learning rate (A. C. Müller & Guido, 2016, p. 88). The learning rate affects the extent to

which each individual tree can compensate for the errors of previous trees, while the

number of trees controls the overall complexity of the model. These two parameters

interact closely: a lower learning rate requires a larger number of trees to produce a

comparably complex model.

A higher learning rate allows the trees to make more corrections, resulting in more

complex models. As mentioned, expanding the number of trees in the ensemble also

increases the complexity of the model. This occurs because there are more opportunities

to compensate for errors in the training data set.

However, increasing the number of estimators can increase the intricacy of the model,

potentially leading to overfitting. A good approach is to calibrate the number of trees,

considering time and memory resources, and then systematically exploring different

learning rates (A. C. Müller & Guido, 2016, p. 88 f.).

Gradient boosting creates an additive model using a stepwise forward approach. It

involves the optimization of various differentiable loss functions. Regression trees are

trained in each run based on the negative gradient of the selected loss function, here the

binary log loss (logistic loss). In the case of binary classification, only one regression tree

is generated.

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics/blob/main/supervised_learning/classification/ensemble_methods/boosting/code/gradient_boosting_classifier_tutorial.ipynb

30 30

Gradient Boosting is a combination of gradient descent and boosting. In gradient

boosting, gradients identify the weak points. This is executed by iteratively taking steps

in the opposite direction of the gradient of the function at the current point, effectively

moving in the direction of the steepest descent (A. C. Müller & Guido, 2016).

The objective of the logistic loss (Agostinho & Mendes-Moreira, 2022; Godoy, 2022),

also referred to as cross-entropy, is to quantify the discrepancy between predicted

probabilities and true classes. After computing the loss, the weights are updated. The

objective is to minimize this error.

Given are 𝑦 ∈ {0, 1} as the label, 𝑝(𝑦) is the predicted probability, it is the weight given

to each calculated error; 𝑁 denotes the total number of data points,
1

Ν
 is the probability

over any given data point being sampled, log is the natural logarithm:

𝐻𝑝(𝑞) = −
1

Ν
∑ 𝑦𝑖

𝑁

𝑖

× log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) × log(1 − 𝑝(𝑦𝑖))

(4)

The equation has two components, the positive class (𝑦𝑖) × log(1 − 𝑝(𝑦𝑖)) and negative

class (1 − 𝑦𝑖) × log(1 − 𝑝(𝑦𝑖)). The loss is computed using the probabilities p of y

produced by a model, which is the probability for a data point being 1 or 0.

As mentioned in Chapter 3.3, the boosting method requires a large data set. Therefore,

the RandomOverSampler is introduced. In the process of random oversampling, an

element 𝐸 from the minority class is added. Choosing a random set of minority samples

from 𝑆𝑚𝑖𝑛 expands the original set 𝑆 by replicating and adding to 𝑆 the selected samples.

In this way, the balance of the class distribution can be adjusted to the required level (He

& Garcia, 2009).

The comparison of the performance before and after resampling the data set shows the

model lacks the ability to predict entities for class 1. As shown in Table 7, the precision

compared to the resampled data set is much higher for class 1.

 precision recall f1-score

Class 0 0.87834 0.99933 0.93494

Class 1 0.60000 0.00718 0.01418

Table 7 | Performance of the Gradient Boosting Classifier before applying the RandomOverSampler. The model is not very

successful in identifying entities for class 1.

Applying the RandomOverSampler improves the model performance; it has learned to

identify samples for class 1 in 68% of the cases, as Table 8 displays. However, the

precision is only at 20%.

31 31

 precision recall f1-score

Class 0 0.93302 0.62650 0.74964

Class 1 0.20181 0.67738 0.31098

Table 8 | Performance of the Gradient Boosting Classifier after applying the RandomOverSampler. The recall compared to the

basic model increased from 0.00% to 68%. The model is successful in identifying significantly more entities for class 1.

The notebook comes to an end with a summary. Additionally, there is a brief discussion

on which steps could be taken next.

6.3.2 Folders text and image

The file gradient_boosting_classifier.md points out the key components of the gradient

boosting algorithm. The intent is to provide a brief explanation or refresher.

The figure illustrates the structure of the Gradient Boosting Classifier, showing the

combination of weak learners and the overall process.

The text provides a comprehensive overview of the gradient boosting algorithm, its

components and its characteristics.

6.4 Text and Images on main level

The explainer data_set.md gives a brief overview of the concept of handling imbalanced

data sets. It provides a non-exhaustive list of methods, according to Ramyachitra &

Manikandan (2014), for treating imbalanced data. The examples include sampling

techniques on the data level, cost-sensitive learning methods on the algorithmic level,

and filter-based feature ranking on the feature selection level. The sampling methods

Undersampling, Oversampling, and BalancedRandomForestClassifier are mentioned

again since they are used in the tutorials.

Reducing the total cost of the training data set is the aim of the cost-sensitive learning

method. The feature selection method involves choosing a subset of input features by

excluding attributes with little or no predictive information by some measure.

The text statistical_measure.md provides statistical concepts that relate to data

distribution analysis and descriptive statistics computation. It primarily focuses on the

concepts of skewness and the selection of terms within descriptive statistics. The work

includes a visualization of skewness for the various distribution types, highlighting the

mode, median and mean values.

7 Comparison of Performance

This chapter aims to present the performance comparison results for the classifier

decision tree, random forest and gradient boosting. For this purpose, different methods,

including GridSearch, are utilized during the first training to identify the optimal

parameters for each model. This is followed by determining the most important features

32 32

per model for the final version of training. After selecting the best features, each model

is trained with the most important features and the optimal parameter settings.

The relevant repository, as linked in Appendix B, containing the applied comparison, can

be found on GitHub.

The code is iteratively extended and adapted. In the final version, balancing the data set

by using the RandomOverSampling method replaces the prior version Synthetic Minority

Over-sampling Technique (SMOTE) method. Chapter 8 gives a brief explanation of why

this method is discarded.

The best-performing model is determined. The F1-score, Receiver Operating

Characteristic (ROC) curve and AUC score are used as performance metrics.

Furthermore, the run-time of each model is compared.

As the computational power is limited, adjustments were necessary. Instead of the

permutation feature importance, the built-in feature importance is used in the final

version. The permutation feature importance resulted in memory flooding after a couple

of minutes of run-time.

The parameter of the GridSearchCV are adjusted manually. Parts of the parameter used

by Bentéjac et al. (2021) for the random forest and gradient boosting are taken as a

source. The decision tree uses the work of Vos & Verwer (2021) as a reference.

However, this is done in a reduced grid due to computational constraints.

Grid parameter for Decision Tree Classifier:

 'model__max_depth': [4, 5, 10],

 'model__min_samples_split': [2, 5, 10],

 'model__min_samples_leaf': [5],

 'model__random_state': [42]

The best parameter for the decision tree determined by the grid search are (only those

that differ from the default parameters):

'max_depth': 10, ‘min_samples_leaf': 5, 'random_state': 42

Grid parameter for Random Forest Classifier:

 'model__n_estimators': [100, 200],

 'model__max_depth': [5, 8, 10],

 'model__min_samples_split': [2, 5, 10],

 'model__random_state': [42]

Grid parameter for Gradient Boosting Classifier:

 'model__n_estimators': [100, 200],

 'model__max_depth': [3, 5, 7],

 'model__learning_rate': [0.05, 0.1, 0.3],

 'model__random_state': [42]

https://github.com/auringonnousu/performance_comparison_ML_models

33 33

The best parameter for the random forest determined by the grid search are (only those

that differ from the default parameters):

'max_depth': 10, 'n_estimators': 200, 'random_state': 42

The optimal parameter for the gradient boosting, determined through grid search, are

(only those that differ from the default parameters are listed):

'learning_rate': 0.3, 'n_estimators': 200, 'max_depth': 7, 'random_state': 42

A higher learning rate allows the model to make more corrections. For gradient boosting,

the ability to generalize could deteriorate depending on the number of elements in the

ensemble, especially at high values for the learning rate (Friedman, 2001). However, this

effect can be countered or even reversed by utilizing lower learning rates.

Friedman's (2001) research indicates that the optimal approach to regulating gradient

boosting effectively is to set the number of models to the maximum computationally

feasible level and adjust the learning rate. This step would exceed the scope of this work.

VehBCost and VehOdo rank among the most important features for decision tree and

random forest. VehBCost ranks as one of the most important features for the gradient

boosting as displayed in Figure 11. This indicates that these features strongly influence

the target variable across model types.

Figure 11 | Top 5 important features for each classifier.

The time-based feature PurchDate and VehicleAge for the decision tree contribute to

predicting the target variable. Also, VehicleAge has a relatively high importance in the

GradientBoostingClassifier. For the RandomForestClassifier, the price features have an

34 34

impact. For the GradientBoostingClassifier, three categorical features play a role. The

resulting amount of most important features after manually setting a specific threshold

per model are:

Amount of features for Decision Tree Classifier: 293

Amount of features for Random Forest Classifier: 353

Amount of features for Gradient Boosting Classifier: 61

The different number of features reflects how each model's underlying algorithm works.

Decision trees are more likely to overfit, so a larger number of important features

indicates that the model has adapted to capture noise in the data (A. C. Müller & Guido,

2016, p. 28). Random forests use a broader set of variables to create a diverse ensemble

of trees. Gradient boosting, in contrast, tends to prioritize boosting the performance of a

few key features to minimize errors (A. C. Müller & Guido, 2016, p. 88).

Figure 12 displays the execution time per model in seconds. The Gradient Boosting

Classifier took the longest compared to the other models.

Figure 12 | Run-time per model. The run-time per model includes performing GridSearch, cross-validation and training with the

mentioned grid parameter.

After training each model with the most important features and optimal parameter, the

following results are obtained:

35 35

Figure 13 | ROC curve and AUC for the decision tree after training with the best parameter and most important features

Figure 14 | ROC curve and AUC for the random forest after training with the best parameter and most important features

36 36

Figure 15 | ROC curve and AUC for the gradient boosting after training with the best parameter and most important features

The ROC curve shows the false positive rate (FPR) versus the true positive rate (TPR).

An optimal ROC curve near the top left corner represents a classifier that achieves high

recall with a low false positive rate. The diagonal represents as many true decisions as

false ones (chance). This means that for a binary classification, a class can be 0 or 1.

This is not the intended result (Marsland, 2014, p. 24).

The AUC provides a comprehensive performance measure by condensing the ROC

curve into a single value (A. C. Müller & Guido, 2016, p. 293). Ideally, a classifier should

have an AUC of 1.

The ROC curve in Figures 13, 14 and 15 shows each result per classifier. The gradient

boosting is closest to the desired result, with a ROC curve closest to the left corner and

an AUC of 0.9954.

The number of essential features per model indicates that each model requires only a

limited number of initial predictive features. Therefore, one potential step would be to

reduce the data set further before training the models. This would also minimize the

training duration.

To avoid overfitting, focusing on the most significant features is useful. A further step

would be to define the parameter grids as more granular, primarily for the Gradient

Boosting Classifier.

For the given use case, the gradient boosting model performs the best. By optimizing

further as stated, there is potential for an increase in precision and recall for each model

while maintaining a focus on generalization.

37 37

8 Conclusion and Outlook

This work aims to integrate algorithms as OER into the existing repository. The original

roadmap does not include performing an EDA. The implementation has accordingly

modified the schedule. The topic of licenses has been more time-consuming.

Consequently, other components, such as MkDocs, could no longer be implemented.

The licenses added in this work for the images differ from those already in the repository,

hence a next step would be to unify them. In addition to adding more algorithms,

notebooks focusing on different evaluation methods, such as ROC curve AUC, could be

added to the repository in the future.

The data set used in the programming contribution deals with vehicles; while this work

includes examples from medicine and omics, it addresses different audiences. However,

the kick data set is a good illustration of the unbalanced nature of real-world data.

While implementing the code, some aspects arose that required adjustments.

The SMOTE method was first used in combination with the get_dummies() encoding

method in the Random Forest Classifier and Performance notebooks to balance the data

set. However, in the course of research for this work, it became apparent that SMOTE is

not the appropriate method to balance the data set. SMOTE is better suited for data sets

consisting of numeric attributes. The data set also contains categorical attributes. These

are transformed into numeric values using the encoding method. Yet, the following

challenge arises when using the sampling method: SMOTE cannot handle categorical

variables or their numerically encoded variants. The example illustrates this issue:

The mean values of the individual features for class 1 should have stayed almost the

same as a result of resampling by SMOTE since it only adds new samples that are an

interpolation of two previous members of class 1. For actual numeric variables, this can

be seen accordingly:

print(pd.np.mean(X_train[(y_train==1)]['CurrentAuctionAveragePrice']))

Mean for CurrentAuctionAveragePrice in original data: 5488.968

print(pd.np.mean(X_train_resampled[(y_train_resampled==1)]['CurrentAuctionAveragePrice']))

Mean for CurrentAuctionAveragePrice in resampled data: 5420.338

The average value of the CurrentAuctionAveragePrice attribute has mostly stayed the

same for class 1. With the 0/1 variables, the situation is different:

print(pd.np.mean(X_train[(y_train==1)]['VNST_TX']))

Mean for VNST_TX in original data: 0.208

38 38

print(pd.np.mean(X_train_resampled[(y_train_resampled==1)]['VNST_TX']))

Mean for VNST_TX in resampled data: 0.085

In the original training set, 20.9% of all class 1 samples came from Texas, in the

resampled set, only 8.6%. SMOTE cannot handle 0/1 integer variables because

everything between 0 and 1 that is not 1 is rounded to 0 (because in Python, int(0.9999)

== 0). Thus, all synthetically generated samples have a strong bias to 0 in their 0/1

variables.

SMOTENC can sample both numeric and categorical attributes correctly. Encoding of

categorical features, however, must be executed after sampling. In the SMOTE-NC

source code4, OneHotEncoding is implemented, but for the classifiers used, the

respective attribute must be encoded accordingly after resampling. The alternative would

have been to integrate the get_dummies encoding method after the sampling method in

the notebook. Due to time constraints, it is not possible to include these adaptations in

the random forest notebook and the performance notebook. Therefore, the methods

BalancedRandomForestClassifier and RandomOverSampler have been implemented.

4 https://github.com/scikit-learn-contrib/imbalanced-learn/blob/27bb6c7/imblearn/over_sampling/_smote/base.py#L398.

Bibliography

39

Bibliography

Agostinho, S. P. L., & Mendes-Moreira, J. (2022). Probabilistic Metric to measure the

imbalance in multi-class problems. Proceedings of the Fourth International

Workshop on Learning with Imbalanced Domains: Theory and Applications,

151–162. https://proceedings.mlr.press/v183/agostinho22a.html

Alpaydin, E. (2014). Introduction to Machine Learning (3rd ed.). The MIT Press.

https://mitpress.mit.edu/9780262043793/introduction-to-machine-learning/

Bartlett, P. L., Jordan, M. I., & McAuliffe, J. D. (2006). Convexity, Classification, and

Risk Bounds. Journal of the American Statistical Association, 101(473), 138–

156. https://doi.org/10.1198/016214505000000907

Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of

gradient boosting algorithms. Artificial Intelligence Review, 54(3), 1937–1967.

https://doi.org/10.1007/s10462-020-09896-5

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Bondy, J. A., & Murty, U. S. R. (2008). Graph theory. Springer.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/A:1010933404324

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and

Regression Trees (1st ed.). Taylor & Francis.

Chen, C., Liaw, A., & Breiman, L. (2004). Using Random Forest to Learn Imbalanced

Data. University of California, Berkeley.

Dahlstrom, M. F. (2014). Using narratives and storytelling to communicate science with

nonexpert audiences. Proceedings of the National Academy of Sciences,

111(supplement_4), 13614–13620. https://doi.org/10.1073/pnas.1320645111

Dev, V. A., & Eden, M. R. (2019). Gradient Boosted Decision Trees for Lithology

Classification. In S. G. Muñoz, C. D. Laird, & M. J. Realff (Eds.), Computer

40 40

Aided Chemical Engineering (Vol. 47, pp. 113–118). Elsevier.

https://doi.org/10.1016/B978-0-12-818597-1.50019-9

Devika, R., Avilala, S. V., & Subramaniyaswamy, V. (2019). Comparative Study of

Classifier for Chronic Kidney Disease prediction using Naive Bayes, KNN and

Random Forest. 2019 3rd International Conference on Computing

Methodologies and Communication (ICCMC), 679–684.

https://doi.org/10.1109/ICCMC.2019.8819654

Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. Multiple Classifier

Systems, 1–15. https://doi.org/10.1007/3-540-45014-9_1

Echeverria, V., Martinez-Maldonado, R., & Buckingham Shum, S. (2017). Towards

data storytelling to support teaching and learning. Proceedings of the 29th

Australian Conference on Computer-Human Interaction, 347–351.

https://doi.org/10.1145/3152771.3156134

Förstner, K. U., Fasemore, A. M., Elhossary, M., & Müller, R. (2021). Supervised

Machine Learning Methods—A short introduction [Jupyter Notebook]. Förstner

Lab. https://github.com/foerstner-lab/2021-06-21-

Supervised_Machine_Learning_as_part_of_an_EBI_Systems_Biology_course

(Original work published 2021)

Freund, Y. (1995). Boosting a Weak Learning Algorithm by Majority. Information and

Computation, 121(2), 256–285. https://doi.org/10.1006/inco.1995.1136

Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from

remotely sensed data. Remote Sensing of Environment, 61(3), 399–409.

https://doi.org/10.1016/S0034-4257(97)00049-7

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.

The Annals of Statistics, 29(5), 1189–1232.

https://doi.org/10.1214/aos/1013203451

41 41

Gao, B., Wu, T.-C., Lang, S., Jiang, L., Duan, Y., Fouts, D. E., Zhang, X., Tu, X.-M., &

Schnabl, B. (2022). Machine Learning Applied to Omics Datasets Predicts

Mortality in Patients with Alcoholic Hepatitis. Metabolites, 12(1), Article 1.

https://doi.org/10.3390/metabo12010041

Godoy, D. (2022, July 10). Understanding binary cross-entropy / log loss: A visual

explanation. Medium. https://towardsdatascience.com/understanding-binary-

cross-entropy-log-loss-a-visual-explanation-a3ac6025181a

Granger, B. E., & Pérez, F. (2021). Jupyter: Thinking and Storytelling With Code and

Data. Computing in Science & Engineering, 23(2), 7–14.

https://doi.org/10.1109/MCSE.2021.3059263

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still

outperform deep learning on tabular data? (arXiv:2207.08815). arXiv.

http://arxiv.org/abs/2207.08815

Hao, J., & Ho, T. K. (2019). Machine Learning Made Easy: A Review of Scikit-learn

Package in Python Programming Language. Journal of Educational and

Behavioral Statistics, 44(3), 348–361.

https://doi.org/10.3102/1076998619832248

He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on

Knowledge and Data Engineering, 21(9), 1263–1284.

https://doi.org/10.1109/TKDE.2008.239

Hwang, C., Chen, M.-S., Shih, C.-M., Chen, H.-Y., & Liu, W. K. (2018). Apply Scikit-

Learn in Python to Analyze Driver Behavior Based on OBD Data. 2018 32nd

International Conference on Advanced Information Networking and Applications

Workshops (WAINA), 636–639. https://doi.org/10.1109/WAINA.2018.00159

International Open Standard (ISO/IEC 5962:2021). (2021). Software Package Data

Exchange (SPDX). https://spdx.dev/

42 42

Khoirom, S., Sonia, M., Laikhuram, B., Laishram, J., & Singh, T. D. (2020).

Comparative Analysis of Python and Java for Beginners. 07(08).

Knowles, J., Watson, R., & Corne, D. (2001, January 19). Reducing Local Optima in

Single-Objective Problems by Multi-objectivization. Lecture Notes in Computer

Science. https://doi.org/10.1007/3-540-44719-9_19

Kolachalama, V. B., & Garg, P. S. (2018). Machine learning and medical education. Npj

Digital Medicine, 1(1), Article 1. https://doi.org/10.1038/s41746-018-0061-1

Li, S., & Tang, H. (2020). Classification of Building Damage Triggered by Earthquakes

Using Decision Tree. Mathematical Problems in Engineering, 2020, e2930515.

https://doi.org/10.1155/2020/2930515

Li, Y., Wang, X., & Xin, D. (2019). An Inquiry into AI University Curriculum and Market

Demand: Facts, Fits, and Future Trends. Proceedings of the 2019 on

Computers and People Research Conference, 139–142.

https://doi.org/10.1145/3322385.3322422

Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and

genomics. Nature Reviews Genetics, 16(6), Article 6.

https://doi.org/10.1038/nrg3920

Lindstrom, G. (2005). Programming with Python. IT Professional, 7(5), 10–16.

https://doi.org/10.1109/MITP.2005.120

Loh, W.-Y. (2014). Fifty Years of Classification and Regression Trees. International

Statistical Review, 82(3), 329–348. https://doi.org/10.1111/insr.12016

Lorentzen, C. (2022). Release Notes (Version 1.1.3) [Computer software]. scikit-learn.

https://scikit-learn/stable/whats_new/v1.1.html

Maimon, O., & Rokach, L. (Eds.). (2010). Data Mining and Knowledge Discovery

Handbook (2nd ed.). Springer New York. https://doi.org/10.1007/978-0-387-

09823-4

43 43

Marsland, S. (2014). Machine Learning: An Algorithmic Perspective, Second Edition

(2nd Edition). Taylor & Francis Inc. https://doi.org/10.1201/b17476

McKinney, W. (2010). Data Structures for Statistical Computing in Python. Proceedings

of the 9th Python in Science Conference, 56–61.

https://doi.org/10.25080/Majora-92bf1922-00a

Müller, A. C., & Guido, S. (2016). Introduction to Machine Learning with Python: A

Guide for Data Scientists (1st ed.). O’Reilly Media.

Müller, R., Fasemore, A. M., Elhossary, M., & Foerstner, K. U. (2022, July 6). A lesson

for teaching fundamental Machine Learning concepts and skills to molecular

biologists. ECMLPKDD 2021 Workshop TeachML.

https://openreview.net/forum?id=knwKgaspObQ

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT Press.

Padillo, F., Luna, J. M., & Ventura, S. (2019). Evaluating associative classification

algorithms for Big Data. Big Data Analytics, 4(1), 2.

https://doi.org/10.1186/s41044-018-0039-7

Patel, H. H., & Prajapati, P. (2018). Study and Analysis of Decision Tree Based

Classification Algorithms. International Journal of Computer Sciences and

Engineering, 6(10), 74–78. https://doi.org/10.26438/ijcse/v6i10.7478

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., &

Cournapeau, D. (2011). Scikit-learn: Machine Learning in Python. Journal of

Machine Learning Research 12 (2011) 2825-2830.

Prechelt, L. (2000). An empirical comparison of C, C++, Java, Perl, Python, Rexx, and

Tcl for a search/string-processing program (2000–5; p. 34). Fakultät für

Informatik Universität Karlsruhe.

44 44

Primartha, R., & Tama, B. A. (2017). Anomaly detection using random forest: A

performance revisited. 2017 International Conference on Data and Software

Engineering (ICoDSE), 1–6. https://doi.org/10.1109/ICODSE.2017.8285847

Quinlan, J. R. (1979). Discovering rules by induction from large collections of

examples. In Expert Systems in the Micro-electronic Age (p. 287). Edinburgh

University Press.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.

https://doi.org/10.1007/BF00116251

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning (1st ed.). Morgan

Kaufmann.

Qutub, A., Al-Mehmadi, A., Al-Hssan, M., Aljohani, R., & Alghamdi, H. S. (2021).

Prediction of Employee Attrition Using Machine Learning and Ensemble

Methods. International Journal of Machine Learning and Computing, 11(2),

110–114. https://doi.org/10.18178/ijmlc.2021.11.2.1022

Rajora, S., Li, D.-L., Jha, C., Bharill, N., Patel, O. P., Joshi, S., Puthal, D., & Prasad, M.

(2018). A Comparative Study of Machine Learning Techniques for Credit Card

Fraud Detection Based on Time Variance. 2018 IEEE Symposium Series on

Computational Intelligence (SSCI), 1958–1963.

https://doi.org/10.1109/SSCI.2018.8628930

Ramyachitra, D. D., & Manikandan, P. (2014). IMBALANCED DATASET

CLASSIFICATION AND SOLUTIONS: A REVIEW. International Journal of

Computing and Business Research, 5(4).

Raschka, S. (2021). Deeper Learning By Doing: Integrating Hands-On Research

Projects Into a Machine Learning Course (arXiv:2107.13671). arXiv.

https://doi.org/10.48550/arXiv.2107.13671

45 45

Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., & Green, R. (2019). Artificial

Intelligence and Machine Learning in Pathology: The Present Landscape of

Supervised Methods. Academic Pathology, 6, 2374289519873088.

https://doi.org/10.1177/2374289519873088

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–

227. https://doi.org/10.1007/BF00116037

Shah, P., Kendall, F., Khozin, S., Goosen, R., Hu, J., Laramie, J., Ringel, M., & Schork,

N. (2019). Artificial intelligence and machine learning in clinical development: A

translational perspective. Npj Digital Medicine, 2(1), Article 1.

https://doi.org/10.1038/s41746-019-0148-3

Shaik, A. B., & Srinivasan, S. (2019). A Brief Survey on Random Forest Ensembles in

Classification Model. In S. Bhattacharyya, A. E. Hassanien, D. Gupta, A.

Khanna, & I. Pan (Eds.), International Conference on Innovative Computing and

Communications (pp. 253–260). Springer. https://doi.org/10.1007/978-981-13-

2354-6_27

Shobana, G., & Umamaheswari, K. (2021). Prediction of Liver Disease using Gradient

Boost Machine Learning Techniques with Feature Scaling. 2021 5th

International Conference on Computing Methodologies and Communication

(ICCMC), 1223–1229. https://doi.org/10.1109/ICCMC51019.2021.9418333

Shouman, O., Fuchs, S., & Wittges, H. (2022). Experiences from Teaching Practical

Machine Learning Courses to Master’s Students with Mixed Backgrounds.

Proceedings of the Second Teaching Machine Learning and Artificial

Intelligence Workshop, 62–67.

https://proceedings.mlr.press/v170/shouman22a.html

Stephens, T. (2015). Release Notes (Version 0.16.1) [Computer software]. scikit-learn.

https://scikit-learn/stable/whats_new/v0.16.html

46 46

Stiglic, G., Kocbek, S., Pernek, I., & Kokol, P. (2012). Comprehensive Decision Tree

Models in Bioinformatics. PLOS ONE, 7(3), e33812.

https://doi.org/10.1371/journal.pone.0033812

ten Cate, O. (2013). Nuts and Bolts of Entrustable Professional Activities. Journal of

Graduate Medical Education, 5(1), 157–158. https://doi.org/10.4300/JGME-D-

12-00380.1

Thiagarajan, J. J., Anirudh, R., Bremer, P.-T., Germann, T., Valle, S. D., & Streitz, F.

(2022). Machine Learning-Powered Mitigation Policy Optimization in

Epidemiological Models. Proceedings of the 1st Workshop on Healthcare AI

and COVID-19, ICML 2022, 63–72.

https://proceedings.mlr.press/v184/thiagarajan22a.html

Thomas, J. (2018, August 16). OpenML. OpenML: Kick Data Set.

https://api.openml.org

Touw, W. G., Bayjanov, J. R., Overmars, L., Backus, L., Boekhorst, J., Wels, M., & van

Hijum, S. A. F. T. (2013). Data mining in the Life Sciences with Random Forest:

A walk in the park or lost in the jungle? Briefings in Bioinformatics, 14(3), 315–

326. https://doi.org/10.1093/bib/bbs034

Trivedi, N., Simaiya, S., Kumar Lilhore, D., & Sharma, S. (2020). An Efficient Credit

Card Fraud Detection Model Based on Machine Learning Methods. MATTER:

International Journal of Science and Technology.

Vanfretti, L., & Arava, V. S. N. (2020). Decision tree-based classification of multiple

operating conditions for power system voltage stability assessment.

International Journal of Electrical Power & Energy Systems, 123, 106251.

https://doi.org/10.1016/j.ijepes.2020.106251

Vanschoren, J. (2023). An Open Machine Learning Course [Jupyter Notebook]. ML

courses. https://github.com/ML-course/master (Original work published 2017)

47 47

Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2014). OpenML: Networked

science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2), 49–

60. https://doi.org/10.1145/2641190.2641198

Verma, A., Lamsal, K., & Verma, P. (2022). An investigation of skill requirements in

artificial intelligence and machine learning job advertisements. Industry and

Higher Education, 36(1), 63–73. https://doi.org/10.1177/0950422221990990

Vos, D., & Verwer, S. (2021). Efficient Training of Robust Decision Trees Against

Adversarial Examples. Proceedings of the 38th International Conference on

Machine Learning, 10586–10595.

https://proceedings.mlr.press/v139/vos21a.html

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.

J., Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. J., &

Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and

Information Systems, 14(1), 1–37. https://doi.org/10.1007/s10115-007-0114-2

48 48

Appendix

Appendix A | Machine Learning OER Collection

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics

Appendix B | GitHub Repository for performance comparison

https://github.com/auringonnousu/performance_comparison_ML_models

https://github.com/Machine-Learning-OER-Collection/Machine-Learning-OER-Basics
https://github.com/auringonnousu/performance_comparison_ML_models

	Extension of an open Machine Learning teaching resource by classification model material
	Erklärung
	Abstract
	Table of Contents
	Acronyms
	List of Tables
	List of Figures
	1 Introduction
	2 Structure of the thesis
	3 State of Research
	3.1 Algorithms for Decision Trees
	3.2 Implementation of Decision Tree Classifier
	3.3 Ensemble Methods
	3.3.1 Implementation of Random Forest Classifier
	3.3.2 Implementation of Gradient Boosting Classifier

	3.4 Open Educational Resources

	4 Machine-Learning-OER-Basics repository
	4.1 Restructuring of the collection
	4.2 Additions for handling the collection

	5 Data Set
	6 Implementation of Machine Learning Algorithms
	6.1 Decision Tree Classifier
	6.1.1 Application of the algorithm
	Gini Impurity

	6.1.2 Folders text and image

	6.2 Random Forest Classifier
	6.2.1 Application of the algorithm
	6.2.2 Folders text and image

	6.3 Gradient Boosting Classifier
	6.3.1 Application of the algorithm
	6.3.2 Folders text and image

	6.4 Text and Images on main level

	7 Comparison of Performance
	8 Conclusion and Outlook
	Bibliography
	Appendix

